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Abstract. In this paper, I describe lessons learned in nearly
20 years of evaluating explanation interfaces with people. In
my work, I have observed that tailoring the explanation to the
user (e.g., a domain expert or a layperson) and task (e.g., de-
cision support or model improvement), or context (e.g., un-
der time pressure) is necessary for meaningful assessment of
explanation quality (e.g., correct decisions or better under-
standing). Learning from trends in empirical research meth-
ods (natural language processing, information retrieval, and
machine learning), I further argue that this is an issue for both
human-computer interaction and machine learning.

Real-world factors influencing the performance of sys-
tems are at best implicitly encoded when inferring probabil-
ities from observations, and at worst, no longer applicable to
the settings for which they are used. In seeking a balanced
approach between this reality and a pragmatic, data-driven
and (by necessity) reductionist approach, I make constructive
suggestions for evaluating the quality of explainable artificial
intelligence.

1 Introduction

Explanations in artificial intelligence focus on making Al
systems’ decision-making processes understandable to hu-
mans.! However, there is a lot of diversity the individuals
receiving the explanations and the Al decision-making pro-
cesses [36]. For this reason, the evaluation of explanations is
different from many other machine learning tasks: the defi-
nition for the “quality” of explanations depends on the user,
task, and context — see also Table 1 for examples [47].

More critically, I argue that experimental design, often im-
plicitly, encodes decisions about which information to show
people and how to present that information. These decisions
lead to variability in experimental design. This variability
could be seen as a lack of rigor. However, it may be more
accurate to see it as an implicit encoding of factors neces-
sary for explanations to be useful. In practice, these are often
unclear or unintentionally vague.

I further argue that the importance of considering these
sources of variability is not inherent to human-computer in-
teraction. Rather, it is also an inherent challenge in inductive
learning and endemic to machine learning (especially in the
face of context and domain shifts). Restated more bluntly: if
you want your explanations to be useful, you do not get rid
of these evaluation challenges in functional (offline metric-
based) evaluations of explanations.

To propose a constructive way forward, I first list some
reasons why we have taken more reductionist approaches to
XAI in the past. Motivated by examples from previous stud-
ies, I argue for more careful reporting of not only experi-

1 Typically, the term explainable Al is used. However, the methods
are more often based on inductive reasoning on large amounts of
data, that is, supervised machine learning.

mental designs but also of intended context, users, and tasks.
In understanding the sources and magnitudes of variance
in our measurements of explanation quality, we can move
closer to understanding whether the “improvements” we see
are meaningful (and when they are so). By identifying these
gaps, we can focus our studies of explanation quality on the
aspects that truly move our understanding further.

2  Why do we need explanations?

Before we can gauge whether an explanation is useful, we
have to have a sense of its purpose. “Interpretability” has by
some been qualified as the degree to which a human can un-
derstand the cause of a decision [36].2

However, understanding can happen on multiple levels and
is rarely an end-goal in itself. Some papers on explainable ar-
tificial intelligence (XAI) are motivated by the claim that ex-
planations can improve user trust. While this has been suc-
cessfully demonstrated in some cases (e.g., [24]), it is cer-
tainly not a given criterion for all tasks and contexts [7]. At
a minimum, a myopic focus on trust is misleading. In some
works, end-users over-rely on system outputs and explana-
tions [14]; while in other systems, people use the systems
despite relatively low trust [33].

In fact, there is no universal consensus on what constitutes
a good explanation or explanation task, or even an agreed-
upon taxonomy of explanatory tasks. This is despite XAl be-
ing a highly active research area. 'Transparency’, 'Explain-
ability’, and ’Interpretability’ are active topics of research at
the main conference of both ECAI and IJCAIL To name a
few further notable examples, there is also a dedicated inter-
national conference on XAI? as well as Dagstuhl seminars,*
and several survey papers focused specifically on XAl eval-
uation [26, 38, 58]. This lack of consensus (at least in part)
reflects the diversity of explanatory goals, e.g., system de-
bugging versus supporting decisions, and different user char-
acteristics (strong visual working memory or less so) or even
roles (lay-users versus experts). Furthermore, some of my
early work found that the same explanations can do well on
one explanatory goal, but poorly on another [51]. In several
experimental setups, I repeatedly found that personalized ex-
planations of recommended items could be very satisfying to
participants, while not aiding or occasionally harming deci-
sion support. In other work, we studied a very different no-
tion of quality. We measured the impact that explanations
can have in mitigating the confirmation bias that people have
when making decisions such as which movies to see next
[53], or which articles to read on a disputed topic [11]. So

2 A further discussion of notions of understandability and measure-
ments thereof can be found in Section 4.2

3 https://xaiworldconference.com/2025/

4 https://www.dagstuhl.de/25142; https://www.dagstuhl.de/25272



Factor Description Examples
User Who you are explaining to Expertise, personality
Task ‘What the explanation is doing Debugging, decision support
Context | The setting in which they are using the explanation | Time pressure, cost, reliability of advisor
Table 1. Factors that influence what counts as a good explanation and therefore also evaluation methodology.

while the notion of quality is a familiar one from other con-
texts (decision support, or accuracy in decisions), the notion
of what counts as accurate (different from what they usually
choose), and even what counts as a suitable explanation (con-
textualizing their behavior relative to other users rather than
promoting a specific decision), is different.

Finally, while explanations can be useful, it is important at
the same time to acknowledge that they may not always be
needed. If user and system decisions align, this may cause
unnecessary overhead. However, if the system has informa-
tion the user does not have, explanations can help the user
identify and understand these gaps in information. In turn,
this can support better performance in line with a vision of
ultra-strong Al as defined by Michie [35] as early as 1988:
The Al is required to teach a (learned) symbolic hypothesis
to a human, whose performance is consequently increased to
a level beyond that of the human studying the training data
alone (c.f., the approaches of [10, 12]).

3 Who are you explaining to (User)

The quality of an explanation is determined by the
fit to the recipient(s). Ensure as much as possible
that the measurement of quality is done by the in-
tended target group. Report on the efforts to align
these, even when they are not successful.

In the previous section, I indicated two possible reasons
for explaining: debugging and decision support. Debugging
a system assumes the user has a certain level of technical ex-
pertise and places a greater emphasis on transparency and fi-
delity. In contrast, a decision-maker can assume that the min-
imal requirement for these is met, but needs to be able to dis-
tinguish between correct and incorrect decisions effectively.
[lustratively, Liao et al. [34] provides more examples of XAl
usage contexts: model improvement, capability assessment,
adapting control, domain learning, and model auditing.

In the same way, every (implicit or explicit) decision we
make in the user-centered evaluation of explanations influ-
ences the conclusions we can draw about explanation qual-
ity. In this section, I discuss how the implicit user influences
participant selection and assumed individual characteristics.

3.1 Participant recruitment.

The selection of study participants can influence the outcome
of the evaluation, and the intended and actual users should
be reported to indicate the reliability or generalizability of
findings [5]. A similar recommendation to report participants
more precisely was also made in a meta-analysis of the eval-
uation of explanations in recommender systems [55]. Ideally,
participants are representative of the target group (e.g., a sys-
tem tester who is doing the debugging), but these are not al-

ways accessible to the experimenter. Or there are only a small
number of available representative participants — as often is
the case with experts.

Crowdsourcing. Pragmatically, many researchers turn to
platforms that can be used to reach a larger number of par-
ticipants, such as Prolific and Amazon Mechanical Turk.
These platforms sometimes support stratification of partic-
ipants (e.g., by location or stance on a given topic), but these
are largely reported by the platform users themselves and
rarely verified. For example, in a study where we balanced
participant selection on their previously reported position on
the topic of legalization of abortion, our resulting sample (in
subsequent questions) still contained many more participants
who supported the legalization of abortion [17]. Crowdsourc-
ing platforms typically also have a limited demographic dis-
tribution, e.g., under-representation in the global south.

One user or more. In our recent work on group recom-
mender systems, we have not only explained to a single user,
but to several. In these cases, both the composition of the
group regarding preferences, and who in the group is being
asked influences the assessment of decision quality (albeit
not directly the explanations) [4]. To generalize further, ex-
planations might be presented to pairs of users or even entire
teams, e.g., a range of medical specialists.

We are currently working with colleagues to investigate
the explanatory needs of different stakeholder types in hu-
man resources (recruiter and job seeker) [43] and advertising
(viewer and advertiser) [59].

Differences between sets of users. One way to study the
influence of the participants on results is to repeat the same
study (replication or A/A test) but with different participants.
Recently, attempts of this kind of experimental replication
have been conducted in the field of natural language gener-
ation — a subfield of computational linguistics and artificial
intelligence that focuses on creating written or spoken lan-
guage from structured or unstructured data. In this spirit, a
recent joint task, ReproGen,” focused on the repeatability of
human evaluations of automatically generated text (not per
se explanations). While small-scale, preliminary results in-
dicate an effect of different participant cohorts. Participants
evaluated the same text on the same criteria (e.g., Fluency),
and on the same scales, but these still had a large difference
in normalized scores between the original study and its re-
spective replication [6].

3.2 Individual characteristics

The work with my team over the years has highlighted
the importance of considering individual user characteristics
(e.g., personality, expertise, cognitive orientation, working
memory, prior beliefs, or privacy concern), especially when

5 Part of the ReproHum project: https://reprohum.github.io/



they are known to be relevant or influential in the task or
domain. For example, we studied the effects of personalizing
an interactive graphical interface for music recommendations
[29]. We found a benefit for personalizing both (explanatory)
visualization and interactive elements to a user characteristic
related to expertise in music (musical sophistication). In an-
other project we studied which visual presentational choice
works best for presenting complex plans, and found that vi-
sual working memory was a crucial moderating factor for
decision-support in a dual-task paradigm [52].

Most relevant perhaps are the findings that suggest that
individual characteristics such as propensity for trusting (au-
tomated) technology, decision-making styles (e.g., intuitive
vs rational) and cognitive orientations (such as need for cog-
nition), may influence which format of explanation is most
effective [23]. In our team, we have also seen that prior be-
liefs strongly influence confirmation bias [11], which in turn
affects how people interpret explanations.

There is a wide range of ways of representing expertise
in the literature. For example, one may distinguish between
expertise, which reflects the stakeholder’s level of familiarity
with Al or the domain-specific knowledge, and role, which
describes their functional involvement with the Al system
[50, 18]. Some studies have found effects of individual fac-
tors on comprehension, including experience with XAl stud-
ies and level or type of education [57] .

More generally, a recent survey summarizes different user
characteristics (demographics, personality, expertise) for 164
studies in explanations of recommender systems [55]. It also
summarizes for which explanatory goal these explanations
were evaluated. While the survey was focused on explana-
tions in recommender systems specifically, this still supports
the argument for a need to consistently report and measure
the effect of individual characteristics on the efficacy of XAl

4 What is the explanation doing? (Task)

e ™

e The task is designed to support certain kinds of
quality measurements. This directly influences
decisions about what stimuli are chosen and pre-
sented.

e To understand the influence of order on results,
study designs should specify how each category
of stimuli has been allocated to participants.

e Of particular interest are explanations for predic-
tions of low confidence or instances for which we
cannot generate explanations.
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The task of the explanation, from a human-centered per-
spective, is to support a given task such as debugging or de-
cision support. Beyond describing how models map inputs to
outputs, explanations should be designed and evaluated with
that specific end in mind.

Explanation quality is then measured in terms of (joint
human-AlI) performance on that task. Each study and task
design encodes several decisions about what a useful expla-
nation is. In the following sections, I make these design de-
cisions and their relationship to the notion(s) of usefulness
more explicit. This is not meant as an exhaustive guide for
evaluation design, but rather to illustrate the relationship be-

tween study design and the conclusions that can be drawn
about the quality of an explanation.

4.1 Study Design

In the ideal experiment, these decisions are shaped by the
setting for which the explanations are intended (see also Task
Design in Section 4.2).

Baselines. The selected baseline(s) should perform well
for the task, and helps assess the added value of a new ex-
planation method. If the baselines are poor, this sets the eval-
uated explanation at an unfair advantage [3] — it may be bet-
ter than a terrible explanation, but it may still not be good.
A common user-centered baseline is the Al alone, compared
against the performance of the Al (with explanations) and the
human together. This answers the question whether an ex-
planation can be helpful, but does not address the question if
another explanation might have been more helpful. For user
studies, an additional motivation for having a relevant base-
line is to control Social Desirability Bias effects (e.g., telling
the experimenter that a system (or its explanations) is good to
please them), and another to help the experimenter to make
sense of quantitative data (e.g., is a score of 3.5/5 “good”?).

How to present versions. As soon as there are more types
of explanations, an experimenter also needs to decide which
versions of explanations each participant sees. These choices
indirectly influence the conclusions that can be drawn about
explanation quality. For example, will these explanations be
shown between-subjects (different people see different ver-
sions), within-subjects (same people see the versions), or
mixed designs (some versions are between- and others are
within-subjects). Are these sequentially shown (first version
1 and then version 2) or concurrently (versions 1 and 2 are
shown together, and the user indicates a preference)? Among
other considerations, a within-subjects design requires fewer
participants, but may cause issues related to fatigue effects,
as well as learning/order effects (see also Ordering below).

Within or between subjects. Whether an experiment is
set up as within- or between-subjects design can more cru-
cially influence the evaluation of explanation quality as
well. We conducted a replication study where each evalu-
ator only scored individual explanations rather than multi-
ple (between-subjects). In contrast to earlier work (within-
subjects), we found no added value of explanations [4].
While other factors (such as the participant cohort or other
small changes to our experimental design) could have influ-
enced our results, the difference in experimental design is
likely a contributing factor to the difference in outcome. By
showing multiple explanations to participants, they are likely
to have compared them to each other.

In some contexts, a comparison by human participants is
desirable. Not only because it requires fewer participants, but
also because it may be easier for a person to compare two
options than to rate a single one. However, a comparison in
evaluating explanations is rarely explicitly stated in relation
to the explanability task. In my work, I eventually learned
that experiments that collect repeated measures (e.g., rating
the explanation multiple times) for each participant allow us
to run tests that statistically control for differences between
individuals (including ones we did not model explicitly).



Ordering. With more stimuli, the order of explanations in-
fluences the score(s) each explanation receives. Explanations
that participants see earlier influence explanations that par-
ticipants see later. An exploratory analysis of earlier works
also indicates that people learn different strategies of using
Al assistance depending on what Al assistance they saw pre-
viously, indicating that we may need to take this into account
when designing adaptive Al assistance [49]. Even though ex-
planations are not shown side-by-side, participants are likely
to make comparisons.

A common solution is randomization of participants to
conditions, or of task order in repeated measures. Excep-
tional are tasks where explanations are designed to improve
learning, and might increase in complexity over time. Or if
the end task for other reasons follows steps in a certain order
(e.g., following a process for a diagnosis).

4.2 Task Design

Recent work on human-centered XAI explicitly distin-
guishes between one-stage (Al and human decision concur-
rent), two-stage (user decides and updates after receiving
more information), and on-demand (where the user can ex-
plicitly request the explanations) [12].

Others have introduced the notion of Frictional Al and
pro-hoc explanations, intended as cognitive interventions or
to boost users’ motivations to engage analytically with Al
assistance [10]. Miller et al also make a case for present-
ing possible explanations for competing decision outcomes,
rather than promoting a single decision or outcome [1]. This
hypothesis-driven decision support using evaluative Al also
makes the distinction between XAl as a decision-making tool
rather than a persuasive explanation mechanism. These inter-
ventions all apply two-stage evaluation methodologies.

Longer interactions can be found in the recommender sys-
tems domain, where users can see the connection between
inputs, parameters, and outputs (e.g., [29]). With this, we
also see a methodological development for evaluation over
repeated interactions, c.f., [31, 54].

The majority of user studies in XAl are set up as a one-
shot exposure to explanations. In some cases, these are a se-
ries of decisions (in a within-subjects design)— but typically,
each decision is associated with precisely one explanation,
and no revision is supported. In a scenario where multiple
decisions are taken by an individual (e.g., detecting fractures
in X-rays for different patients) repeated evaluations are con-
gruent with the intended task (high ecological validity).

Finally, the user may have new information that could
change the prediction [46]. In that case, the interaction may
allow the user to supply this new information.

Metrics. Task design and metrics are closely linked. The
task should support certain kinds of measurements. Studies
measuring the same constructs can use different questions or
even scales. I survey here some possible measurements for
decision-making and understandability.

Decision-making Multi-stage experimental designs are
particularly well-suited for evaluating the notion of super-
strong Al, i.e., whether human decision-making is enhanced
with the addition of Al (in comparison with human-only).

Previous experiments measured the correctness of deci-
sions. They also measured change in preference for recom-

mended items [8] [51]. Participants saw the explanation for
the recommended item, to which they gave a score. Then they
learned more about the item (to simulate the actual decision
or consumption of the item), and gave a new score for the
item. The idea was that a good explanation would result in
a small change in score — that is, the user should be able to
estimate the actual preference or score for the item well with
only the explanation.

This evaluation could measure not only the final outcome,
but the process leading to the outcome. A solid frame-
work for understanding how users make choices and how
to best support them is further supplied in Jameson et al. [28].

Understandability. Understandability, on the other hand,
is more relevant for other usage contexts such as model
improvement and model auditing. These usage contexts,
in turn, define the type of tasks for which performance is
measured. Understandability is also a notoriously difficult
in XAl: even data scientists have been found to misinterpret
the explanations given by off-the-shelf tools [32]. This
measurement can be both task-based (more objective) or
based on user perceptions (more subjective) [56]. The
former allows for a quantitative approach that employs a
questionnaire consisting of a collection of curated questions
about a predictive system for a given task that are aligned
with a selected definition of comprehension. E.g., whether
users can derive or simulate the model’s output and identify
feature influence [42, 56]. Earlier work often made use
of the subjective understanding, employing post-survey
questionnaires which ask users whether an explanation is
understandable and fulfills their needs, a.o., [21, 40]. In
measuring understandability, it is crucial to calibrate task
difficulty to avoid floor and ceiling effects (all explanations
are highly understandable or poorly understandable). In
addition, it is valuable to report accuracy per task type rather
than on aggregate.

Stimuli selection. The choice of task also indirectly in-
forms stimuli or instance selection (e.g., which images, text,
or items to recommend and explain). This is particularly rel-
evant for local instance-based explanations. For example, ex-
periments that include difficult instances are suitable for situ-
ations where low confidence is likely to occur [13]. Studying
both correct and incorrect instances is necessary for studying
over-reliance [14].

For global explanations, different considerations arise re-
garding coverage, confidence, and reliability. For example,
in previous work, we found that not all instances could be
recommended and therefore also could not be explained [4].
Explanation (and prediction) coverage is helpful information
for indicating the boundaries of experiment content validity
(we may be measuring the right construct, but some aspects
are missing from the measurement).

There is also a growing body of research that studies ex-
planations that are (intentionally or accidentally) misleading.
Recent work has studied whether participants draw conclu-
sions that are not specified or possible to deduce in the ex-
planations [57]. An additional possible complication is that
certain predictions have low confidence. In such cases, it is
important to convey this low confidence or choose not to ex-



plain at all [14]. NIST® proposed a Knowledge limits prin-
ciple, which indicates that a system only operates under the
conditions it was designed for and when it reaches a suffi-
cient confidence in its output or actions [39]. While there
is understandable resistance to conveying uncertainty, recent
work in visualizations argues that uncertainty communica-
tion necessarily reduces degrees of freedom in viewers’ sta-
tistical inferences [27]. The need to convey confidence is
only likely to grow with the increasing use of generative Al.

4.3 In which setting are they using the
explanation? (Context)

The context influences how explanations are pro-
cessed and which users and tasks are (most) relevant
to study. It is valuable to study and report on context
systematically.

Furthermore, a user with the same characteristics and the
same task, may still need a different explanation in new con-
texts. From a data or offline evaluation perspective, the anal-
ogy here is one of domain shift, and specifically, covariate
shift. In machine learning, we also see examples of label
shift and conditional shift. Said differently, machine learning
models make assumptions on the distribution of input, out-
put, and key context variables. By making these assumptions
explicit, we are better informed when making interpretations
or identifying when these assumptions are violated.

For example, certain contextual factors influence over- and
under-reliance. E.g., Sutherland et al. [48] studied effects of:
the cost of receiving advice (time required for the adviser to
give advice), the reliability of the adviser (% of time correct),
and the predictability of the environment. This means that
the relationship between explanation quality is moderated by
these contextual factors. We typically pick a specific context
for our experiments, which may or may not be relevant for
future scenarios.

In addition, user, task, and context are often interdepen-
dent. E.g., task difficulty can be considered a contextual vari-
able, which is also mediated by the domain. Domain also
influences the perceived stakes, where some domains are
higher stakes than others. The way cost is defined in the ex-
periment will likely influence the explanation quality. A third
example can be found in explanations for multiple users. This
raises contextual issues, examples include intergroup dynam-
ics and privacy concerns [37].

5 Maetric-based functional evaluation

In the following sections I discuss why this problem is not
unique to human-computer interaction approaches to XAlI,
and is (also) in fact endemic to inductive (data-driven) ma-
chine learning. I move on to identify other issues that are
inherent to the evaluation of explanations, regardless of the
choice to conduct a user-centered or offline metric-based
evaluation.

6 National Institute of Standards and Technology

Switching to offline metric-based evaluation may
appear to resolve some issues, but these are latent
rather than absent. If changing the user, task, or con-
text ‘changes’ explanation quality by 10%, it may
not be meaningful to report a 2-3% performance im-
provement that does not control for these variables.
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Users are hard. Let’s do offline evaluation. A reader
may, at this point, conclude that they are grateful to avoid
the messy complexity of user-centered evaluation and return
to offline metric-based evaluations. Aside from the fact that
these methods are not fit for measuring the impact on people,
analogies for the complexities listed for user evaluation also
exist in offline evaluation. The user, task, and context are as-
sumed to be (implicitly) represented in the data. More often
than not, it is not (yet) explicitly encoded.

Big enough an improvement? One question is what mag-
nitude of improvement should be considered meaningful. Be-
low, I highlight findings in different flavors of machine learn-
ing and Al that indicate that performance improvements are
not as meaningful as they seem, often incorrectly attributing
the improvement to a new predictive model.

Already in 2009, a paper in information retrieval put into
question the conclusions of a decade of results [3]. More re-
cently, at ICML 2024, a position paper states that “a com-
mon but incomplete understanding of empirical research in
machine learning that leads to non-replicable results, makes
findings unreliable, and threatens to undermine progress
in the field” [25]. Analogously, (in the relatively younger
field of) recommender systems, a 2023 paper questioned the
source of reported improvements in performance [44]. To
highlight that this problem exists also for unsupervised learn-
ing, similar challenges have been identified for reinforcement
learning (c.f., [22, 30]). There is no reason why we would be
immune to such a replication crisis within explainable artifi-
cial intelligence.

Solving for the right task. Taken as a thought experi-
ment, if changing the intended user or task changes the per-
formance on offline metrics more than changing the predic-
tive models, then we may be optimizing on factors that are
not fit for purpose. For example, our recent results in video
summarization (computer vision) suggest that metric-based
evaluation fails in its default form to adhere to fundamental
qualities of a good video summary — a sensitivity to order in
the summary. In fact, summaries with perturbed temporal co-
herence still perform very well on offline metrics (F1-score
alignment with a human-generated gold standard) [19]. Ar-
guably, the human scores of scene relevance could be per-
fectly correct. However, they are unsuitable or limited when
performing this task: summary generation. To the best of my
knowledge, the suitability for user and task has not yet been
systematically tested in this way. However, understanding
how the change of user, task, or context influences the per-
formance can give us a sense of which orders of magnitude
are meaningful to aim for.

The field of Explainable Artificial Intelligence would do
well to learn from these findings in the wider machine learn-
ing community, just as computer science has been learning
from the reproducibility crises in medicine and psychology.



The calls to attention listed above should be taken posi-
tively. They are not a damnation of the approaches or sub-
disciplines 1 selected. Rather, these papers should be taken
in the context of an evolving and positive development of re-
flection in machine learning. Even stronger, the increase in
empirical studies and machine learning challenges is a nec-
essary condition for asking questions about how the field is
evolving. Other communities of machine learning, including
LLMs, and evaluation of explanations, do not yet have the
same richness of empirical and experimental data, but are
will be facing this as a dormant issue.

5.1 Common issues

There are a number of issues that affect the evaluation of
explanation more broadly (both when explanations are eval-
uated using offline metrics and in user studies).

Ground truth. Most XAI methods rely on a ground truth,
and this includes most of the feature-based and saliency-
based methods that are currently dominant in the literature.
For user studies, this bottleneck appears as limited access to a
sufficient number of representative and reliable users (to gen-
erate or label the ground truth). For most offline evaluations
measuring some notion of fidelity (either completeness or
soundness), the bottleneck is whether the data is sufficiently
representative for the current situation. Implicit decisions en-
coded in a user study, can equally be encoded in a machine
learning task. Possible information to encode could be: Who
were the participants who wrote or assessed the ground truth
explanations? If these were automatically generated, which
indications do we have that they s#ill represent the intended
target users? Or, if explanations are given as a sequence or in
combination, has this also been considered in the training of
the predictive model?

There are however, some XAl evaluation methods that are
not reliant on a ground truth [38]. For example, AXE mea-
sures how well a given explanation can help emulate model
behavior [41]. Other exceptions use instance-based diversity
metrics, e.g., how diverse are the examples supplied to justify
this explanation?

Given that access to relevant ground truth is a common is-
sue, some researchers are experimenting with large-language
models as annotators (LLM-as-judge paradigm) [2, 15, 16].
These methods themselves have historical biases and are
prone to context shifts. Furthermore, they suffer from issues
of errors, ambiguity, and too much homogeneity (model col-
lapse). However, they do have the advantage that they can
be prompt-tuned to both users and tasks and tools are be-
ing designed to support joint annotations.” LLMs work bet-
ter in resource-rich rather than scarce domains; however at
the time of writing, no conclusive advice can be given about
when these can be used reliably.

Generating explanations. Other challenges lie not in the
evaluation protocol itself but in the process of generating the
explanations. Assumptions (or errors) on the machine learn-
ing model can be propagated to the explanations themselves.
For example, explanations based on inductive inference are,
by design, vulnerable to data shifts that influence the quality
of explanations that can be generated. This is also why it can

7 E.g., https://huggingface.co/spaces/Eval Assist/Eval Assist

be hard for a human assessor to assess explanations — they
may be assessing the veracity of an explanation that builds
on an erroneous or simply an outdated predictive model. The
explanations then receive a poor score, even if the predictive
model is (primarily) at fault. 7o achieve better decision mak-
ing, an ideal explanation could be (selectively) decoupled (or
systematically varied) from the predictive model.

6 Moving Forward

Having reviewed the many challenges for XAl evaluation,
the reader may be forgiven for asking how to move forward
constructively. In a sense, these problems are recognized
in the broader fields of Al, machine learning, and human-
computer interaction. In response, I offer concrete sugges-
tions specifically for how XAl evaluation can move forward
as a field.

To improve the quality of explainable artificial in-
telligence, we would benefit from: a) systematic re-
porting of user, task, and context; b) an investment
in reproducibility studies, and ¢) more meta-analysis
of experiments.

Systematic reporting. There is a very good reason why
we take a reductionist approach in our evaluations in ma-
chine learning. Collecting data is not only expensive, but ev-
ery study is constrained in terms of the type and quantity
that we can collect. This simplification is in fact necessary
for empirical research. If we were to model for each specific
user, task, and context, most data sets will have an insuffi-
cient number of data points with each intersection.

In practice, however, most applications do not need to con-
sider all or very fine-grained intersections of these dimen-
sions. Much like transfer learning, smaller studies allow us
to identify the dimensions of interest, which can later be
expanded to larger or more expensive experiments. Qualita-
tive and design-driven methodologies are excellent for these
more exploratory stages, allowing the quantitative methods
to focus on confirmatory analysis instead.

Careful reporting, in contrast, allows for a better matching
between empirical findings and usefulness without causing
unnecessary cost or evaluation paralysis. Similiarly, if more
data collection of a specific type (e.g., for a given task) is
needed, it is more cost-effective to know precisely where the
data is sparse. A helpful reference, focused on what to re-
port in human evaluation of text can be found in The Human
Evaluation Datasheet [45].

Meta-analysis. Broadly speaking, a meta-analysis can be
defined as a systematic literature review supported by statis-
tical methods where the goal is to aggregate and contrast the
findings from several related studies [20]. Meta-review al-
lows for conceptual comparison of how factors such as task
or even dependent variables (e.g., explanation quality) are
defined across papers.

At the moment, we cannot do statistical meta-analyses in
XAI since we are largely comparing widely disparate stud-
ies — we are comparing apples and oranges. For a successful
meta-analysis, rigor in reporting is therefore a prerequisite.



The outcome measures of these analyses differ, but one com-
mon notion (represented by several metrics) is “effect size”
— indicating how much a factor (e.g., an explanation type)
influences the outcome variable (explanation quality). Statis-
tical meta-analyses can also be used to answer other ques-
tions, including moderator analysis across multiple studies,
e.g., whether the effectiveness of the explanations depends
on the characteristics of the user or task. Statistical pack-
ages for meta-analysis exist, such as METAFOR®, and META-
ANALYSIS?, but are not commonly used in computer science.

Replicability. Another barrier has been difficulty in repli-
cating studies. Part of the solution lies in good replication
practices and FAIR practices, e.g., making code and data
reusable (including sufficient documentation) and findable
(using rich metadata), as well as pre-registration studies'®
and registered reports [9]. Additional requirements arise for
generative Al, such as reporting on version, date of access,
exact prompts used, as well as multiple runs and benchmark-
ing on open datasets. The recent General-Purpose Al Code of
Conduct'" as well as BenchmarkCards'? provide guidance on
model (and data) transparency. Finally, despite limitations,
leaderboards and reproducibility tracks have also been fertile
for standardization and benchmarking, and have helped us
collect richer empirical evidence for specific machine learn-
ing tasks. Explainable Al can learn from these developments.

7 Conclusion

In this paper, I made the argument that the assessment of
explanation quality is dependent on task, user, and context.
These are issues that are common to both from human-
centered and metric-based evaluations of explanation qual-
ity. This means that the lack of conscious tailoring in data-
driven (inductive reasoning) approaches is particularly prob-
lematic and hinders progress in the field. Fortunately, we are
starting to have enough empirical studies to collectively im-
prove our reporting and meta-analysis. In understanding the
sources and magnitudes of variance in our empirical find-
ings, we can move closer to an understanding of whether the
“improvements” we see are meaningful. Better reporting can
then serve as a basis for charting which tasks and contexts
are less understood, and to better target our research efforts.
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