
Rate it Again: Increasing Recommendation Accuracy by
User re-Rating

Xavier Amatriain
Telefonica Research

xar@tid.es

Josep M. Pujol
Telefonica Research

jmps@tid.es

Nava Tintarev
Telefonica Research

nava@tid.es

Nuria Oliver
Telefonica Research

nuriao@tid.es

ABSTRACT
A common approach to designing Recommender Systems (RS)
consists of asking users to explicitly rate items in order tocollect
feedback about their preferences. However, users have beenshown
to be inconsistent and to introduce a non-negligible amountof natu-
ral noisein their ratings that affects the accuracy of the predictions.
In this paper, we present a novel approach to improve RS accuracy
by reducing the natural noise in the input data via a preprocessing
step. In order to quantitatively understand the impact of natural
noise, we first analyze the response of common recommendation
algorithms to this noise. Next, we propose a novel algorithmto de-
noise existing datasets by means of re-rating:i.e. by asking users
to rate previously rated items again. This denoising step yields very
significant accuracy improvements. However, re-rating allitems in
the original dataset is unpractical. Therefore, we study the accu-
racy gains obtained when re-rating only some of the ratings.In
particular, we propose two partial denoising strategies: data and
user-dependent denoising. Finally, we compare the value ofadding
a rating of an unseen itemvs. re-rating an item. We conclude with a
proposal for RS to improve the quality of their user data and hence
their accuracy: asking users to re-rate items might, in somecircum-
stances, be more beneficial than asking users to rate unseen items.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval] Information FilteringGeneral Terms: Algorithms,
Performance, TheoryKeywords: Recommender Systems, Collab-
orative Filtering, Noise

1. INTRODUCTION AND MOTIVATION
Recommender Systems (RS) [1] are becoming so ubiquitous in

our lives that popular authors have even ventured to say that“we
are leaving the age of information and entering the age of recom-
mendation” [3]. The goal of RS is to model the users’ tastes (pref-
erences) in order to suggest (recommend) unseen content that the
users would find of interest.

User preferences can be capturedimplicitly, by observing user
actions or consumption patterns [12]; orexplicitly, by asking users
to rate certain items. Although explicit feedback adds a burden on
the users, and different users might respond differently toincentives
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[9], it is commonly used because it respects user integrity,allows
for greater transparency, and is more reliable than implicit data in
many cases. RS based on explicit user feedback are built under the
assumption that user ratings constitute the ground truth about the
users’ likes and dislikes. However, little attention has been paid
to how consistent users are in giving these ratings. Great efforts
are being invested in finding better algorithms that can reduce the
Root Mean Square Error (RMSE) in predicting user ratings by10%
[5]. However, it might well be that similar improvements could be
obtained by improving the quality of the input data and applying
off-the-shelf algorithms.

In previous work [2], we reported on a user study designed to
capture user inconsistencies when giving explicit feedback in the
form of movie ratings. Our goal was to characterize the user in-
put (natural) noise and to analyze the impact that this noise has on
the so-calledmagic barrier in RS [10] – i.e. the asymptotic limit
on accuracy improvements for all recommendation techniques, re-
gardless of how fine-tuned they are. The present work takes these
previous results as the starting point, so we summarize themin the
first part of Section 2.

The focus of this paper, though, is on novel approaches to im-
prove the accuracy of standard Collaborative Filtering (CF) algo-
rithms by removing some of the natural noise present in the origi-
nal rating data. We first analyze the behavior of common CF algo-
rithms under different natural noise conditions in the second part of
Section 2. Next, we propose a novel algorithm to remove natural
noise by means ofre-rating– i.e. by asking users to rate again pre-
viously rated items (Section 3). However, in a practical situation it
might not be feasible to have all users re-rate all items. Therefore,
we discuss strategies to select the optimal ratings to be re-rated, in
order to improve the algorithm’s accuracy with minimal interven-
tion (Section 4). This analysis raises the question of the relative
value of re-rating versus adding ratings for new items, which we
discuss in Section 5. Finally, we describe related work in Section
6, and present our conclusions and highlight our lines of future re-
search in Section 7.

In sum, the main contributions of this paper are: (1) A study on
how common CF algorithms behave under a variety of natural noise
conditions; (2) A novel algorithm to denoise explicit rating datasets
based on re-rating; (3) The proposal of strategies to identify the best
items to re-rate in order to accomplish effective partial; denoising
and (4) A discussion on the impact that selective re-ratingvs. rating
of new items would have on the performance of RS

2. NATURAL NOISE IN USER RATINGS
The results presented in this paper build upon previous workin

analyzing user inconsistencies and characterizing user input (natu-
ral) noise in RS via explicit ratings [2]. Therefore, we shall sum-



#Ti #Tj # RMSE
∩ ∪ ∩ ∪

T1, T2 2185 1961 1838 2308 0.573 0.707
T1, T3 2185 1909 1774 2320 0.637 0.765
T2, T3 1969 1909 1730 2140 0.557 0.694

Table 1: Summary of results on the pairwise comparison between
trials. Columns 1 and 2 contain the number of ratings in trials Ti

andTj . Columns 3-4 depict the number of elements in the intersec-
tion and the union for trialsTi andTj . The last two columns report
the noise measured as the RMSE of the intersection and the union
sets respectively.

marize next the findings of that work that are relevant to our current
discussion.

Our user experiment consisted on3 trials of the same task: rating
100 movies selected from the Netflix Prize database [5] via a Web
interface, and included118 participants. The three trials took place
at different points in time in order to assess the reliability of the
user rating paradigm and to measure the variability of users. The
minimum time difference between the first and second trial was24
hours while the minimum time difference between the second and
third trial was15 days. The first and third trial presented items in
the same random order while the second trial presented itemsin
order of popularity. User ratings were provided on a1 to 5 star
scale, with the additional option (an icon) of specifying that they
had not seen or were unable to rate the movie. We compared the
Netflix dataset with ours in terms of the (a) rating distribution and
(b) number of ratings per user, and concluded that our experimental
dataset is comparable to the Netflix dataset with respect to both
variables.

We define the aggregated rating of useru’s ratings of moviem
as a tuple〈rk〉um

, whererk corresponds to the rating in trialTk.
Therefore, for a given useru and moviem we have vector of three
ratings 〈rum1, rum2, rum3〉. Note that there are user× movies
tuples (i.e. 118×100 = 11800 in our case). A rating is considered
to beconsistentacross trials when all values ofrk are the same.
Note that we exclude form our analysis the tuples where allrk are
zeros, which is the value used to represent anot-seen.

In order to analyze the effect that the not seen value has in our
study, we considered two different subsets: a) theintersection, or
only tuples where all ratings areseen(> 0); and b) theunion, where
not seen values are included. For instance, the tuple for twotrials
with ratings〈4, 5〉

um
would be considered inconsistent, because

useru changed the evaluation of moviem from 4 to 5 in the last
trial. This tuple would be included both in the intersectionand the
union set. However, tuple〈4, 0〉

um
would not be included in the

intersection set, because one of the ratings is anot-seen.
Table 1 summarizes the results of the experiment when grouping

the trials by pairs, whereTk corresponds to trialk, k = 1, ..., 3.
For example, inT1, users provided2185 out of the potential11800
ratings. Thus,9615 positions in the rating matrix ofT1 arenot-
seenvalues. The differences in the number of ratings illustratehow
users were not even able to consistently determine whether they
have seen a movie or not. Out of the2185 items that users rated
in the first trial only1682 (77%) were consistently rated again in
trialsT2 andT3.

The right side of the Table contains the RMSE for the intersec-
tion and union sets across all trials. Note that this RMSE is not the
error by a particular RS algorithm but rather the direct measure of
the error between any two trials1. The RMSE ranges between0.56

1Computed as the square root of the square differences between
ratings in the two trials. In the union set, “not seen” valuesare
replaced by the user average.

Figure 1: Percentage of user inconsistencies by rating value

and0.64 for the intersection sets and0.69 and0.77 for the union,
depending on the trials. RMSE is lower for any pair in whichT2 is
involved. Therefore, we concluded thatT2, where items were pre-
sented to the user in order of popularity, is the trial with the least
amount of natural noise [2].

Figure 1 shows the probability of inconsistency by the valueof
the rating between pairwise trials (T1,T2), (T2,T3) and (T1,T3). In
other words, the probability that a rating with a value ofX in trial
Ti will be different in trialTj . Note how ratings with extreme opin-
ions (i.e. the lowest and highest ratings in the scale) aremore con-
sistent(i.e., less noisy) across different trials: the probability of in-
consistencies is highest for2 and3 star ratings. Also note that the
distribution is not symmetric since the probability of inconsisten-
cies is higher in the lower end of the scale (1 and 2 ratings) than in
the positive ratings (4 and 5). The average ratings in our study are
2.73, 2.79 and2.79 for T1, T2 andT3, respectively. Finally, note
that the probability of inconsistency withnot-seenis significantly
lower than any of the rating values.

2.1 Algorithm Robustness to Natural Noise
We shall now analyze the robustness of three common RS algo-

rithms to natural noise and compare their ability to predictdatasets
with varying levels of natural noise. For comparison purposes, we
also include two baselines – user mean and item (movie) mean,al-
though such strategies would not be used in a practical scenario.
The three algorithms are amongst the most commonly used in col-
laborative filtering settings:k-Nearest Neighbors orkNN (item and
user based) [4] and Singular Value Decomposition (SVD) [14].

In order to test the algorithms, we carry out a100-fold repeated
random sampling, selecting90% of our data astraining and10% as
testing– i.e. 10% of unknown ratings are predicted by each of the
algorithms, given the other90%. Our dataset consists of few users
(118) and items (100), with an average of18.5 ratings per user.
Therefore, each testing subset might yield significant differences in
the final error measure. Hence, we use a large number of cross-
validation runs and a90/10 split – instead of the common80/20,
in order to ensure consistent and fair results for all algorithms. This
same validation procedure will be used throughout the paper.

2.1.1 Trial RMSE
First, we analyze the performance and robustness of the algo-

rithms to natural noise by applying each of the algorithms toeach
of trial datasets (T1, T2, andT3).

Table 2 summarizes the RMSE of each of the five algorithms
with the datasets for each trial. Rather than focusing on theRMSE
values for each algorithm – which depend on the parameter set-
tings and nature of the dataset, we are interested in comparing their
robustness to natural noise. As shown in the table, all algorithms
perform best on the second trial (T2). This is the trial that was



Dataset T1 T2 T3 Tbest∆Tworst

User Average 1.2011 1.1469 1.1945 4.7%
Item Average 1.0555 1.0361 1.0776 4%
User-basedkNN 0.9990 0.9640 1.0171 5.5%
Item-basedkNN 1.0429 1.0031 1.0417 4%
SVD 1.0244 0.9861 1.0285 4.3%

Table 2: RMSE of the algorithms in predicting each trial dataset.
The best predicted dataset appears in bold. The last column reports
improvement in % for less noisy trial (T2) as compared to noisiest
(eitherT1 or T3, depending on the algorithm)

Training/Testing Dataset T1 ◭ T2 T1 ◭ T3 T2 ◭ T3

User Average 1.1585 1.2095 1.2036
Movie Average 1.0305 1.0648 1.0637
User-basedkNN 0.9693 1.0143 1.0184
Item-basedkNN 1.0009 1.0406 1.0590
SVD 0.9741 1.0491 1.0118

Table 3: RMSE of the algorithms when predicting one dataset in
terms of another one (Ti ◭ Tj means predictingTj usingTi for
training). Best result for each algorithm in bold.

found to contain the least amount of natural noise, as previously
explained. However, the relative performance ranking of the algo-
rithms remains the same regardless of the dataset –i.e. user-based
kNN first, SVD second, and item-basedkNN third. There are no
significant differences in improvement between the best andworst
predicted dataset: column 5 ranges from4% to 5.5%. Note that the
larger this difference, the more affected the algorithm is by natural
noise.

2.1.2 Prediction RMSE
In our previous analysis, we predicted ratings within a single ses-

sion –i.e. the training and test datasets have the same time stamp.
A more realistic setup consists of predicting future ratings from
past ones. With this rationale in mind, we now measure the RMSE
when predicting a future trial by using a past one. We use a similar
validation procedure as in our previous experiment. However, the
10% test set is now taken from the target trial, which is different –
and later in time – than the training set.

The results are summarized in Table 3. A first observation is that
the error values are similar to the errors obtained when doing intra-
trial prediction for all algorithms. The worst results are obtained
when predictingT3 (last two columns). Note thatT3 is the dataset
with the largest time gap from the rest (at least15 days fromT2 and
16 days fromT1). However, the error obtained when predictingT3

from T1 or T2 is comparable to the error obtained when trying to
predictT3 from its own data (see third column in Tables 2 and 3).
As in the previous experiment, the differences in behavior between
algorithms are not significant.

The best results are obtained when predictingT2 (least noisy
dataset) fromT1. However as summarized in Table 1, the number
of user inconsistencies betweenT1 andT2 was not the minimum
among all trials – which corresponded toT1 andT3 (last column in
the Table). Therefore, we shall posit that the algorithms are more
sensitiveto the amount of noise in the target (test) dataset than the
amount of noise in the training dataset. This hypothesis is con-
firmed when predictingT1 from T2, whereT1 is noisier thanT2

2.
In this case, the RMSE values are notably higher than when pre-

2Note that this experiment is done for illustration purposes, since in
a practical situation it does not make sense to predict a pastrating
from a future one.

dicting T2 from T1: 1.02019 (vs. 0.9693), 1.05338 (vs. 1.0009),
and1.02778 (vs.0.9741) for user-basedkNN, item-basedkNN and
SVD respectively.

This finding suggests that RMSE should be applied with care
when used as a success measure for RS: the performance of the
algorithms will be affected by errors and noise in the test dataset,
such that their true performance might be higher than measured,
due to the noisy “ground truth”. Our findings also suggest that
the performance of all algorithms is affected by the noisiness in
the rating dataset: a change in the order with which items were
presented to the users to be rated (e.g.,in T1 vs.T2) might improve
the algorithm’s performance up to a5.5%, as illustrated in the last
column of Table 2. These findings serve as motivation for the work
presented in the rest of this paper, where we propose an approach
to reduce existing natural noise in order to increase the prediction
accuracy of the algorithm. Since we have already seen that there
is no significant difference between algorithms, results inthe next
sections will be reported only for two representative algorithms:
user-basedkNN and SVD.

3. DENOISING VIA RE-RATING
In the previous section, we have shown the impact that natural

input noise has on the RMSE of RS algorithms and hypothesized
that denoising the input dataset might improve performance. We
explore now whether having multiple repetitions of a user rating
(re-rating) can be exploited to remove some of the natural noise in
the original dataset and hence obtain better predictions.

In particular, we propose a novel denoising algorithm aimedat
removing input noise while retaining maximum information in the
dataset. Hence, we impose twofairnessconditions to be met by the
algorithm:

• The algorithm shall produce a denoised version of the input
dataset that has as many ratings as possible (i.e. it should
delete as few ratings as possible from the original dataset)

• The denoised dataset should always include one of the rat-
ings provided by the user in one of the trials (i.e. the al-
gorithm should not create new values, but rather decide on
which of the existing input ratings to trust)

Algorithm 1 Denoising (D) a t-source re-Rated item

Input: Rum = {r0, ..., rt} – set of ratings of useru on moviem
(original rating plust re-ratings)
Input: γ – threshold of noise
Output:r – de-noised rating
function D : (Rum = {r0, ..., rt}, γ) → r
S = {M ({a, b})} | a ∈ Rum∧b ∈ Rum∧a 6= b∧|a−b| ≤ γ
– Create a setS composed of the mildest value of all possible
pairs of ratings inRum s.t. |a − b| ≤ γ
if ∃a, b ∈ S s.t. |a − b| > γ then

returnD(S, γ) – apply recursively if there is at least oneSD
else

returnM (S)
end if

Given these two conditions, we formalize the Algorithm 1. The
algorithm receives the set oft + 1 ratings that a user has given to
a given item –i.e. original rating plust re-ratings – and returns a
single denoised ratingr. The denoised rating is obtained by recur-
sively removing all ratings that belong to a rating pair (a, b) whose
distance is larger thanγ, and by replacing the pairs whose distance
is less or equal thanγ by the mildest one.



Denoised⊚Denoising T1 ⊚ T2 ∆T1 T1 ⊚ T3 ∆T1 T2 ⊚ T3 ∆T2

User-basedkNN 0.8861 11.3% 0.8960 10.3% 0.8984 6.8%
SVD 0.9121 11.0% 0.9274 9.5% 0.9159 7.1%

Table 4: RMSE of the algorithms when predicting a dataset that has been denoised using rating values from another dataset(Ti ⊚ Tj means
Ti has been denoised usingTj). Also included relative improvement over RMSE in the original (noisy) dataset

The algorithm can be understood by analyzing its output in each
of the three possible conditions. If there isagreement(A) between
all ratings belonging to a given user and movie, the algorithm re-
turns that rating. If all ratings differ by more than a given threshold
γ, there isstrong disagreement(SD) and the rating is removed from
the original dataset. Note that in this particular case we are remov-
ing existing ratings since there is too much inconsistency.We must
ensure that this situation happens only rarely not to conflict with
the first fairness condition that we imposed.

Finally, if at least two ratings differ by less thanγ, there is a
mild disagreementcondition (MD). The strategy to follow in this
case is not obvious. In the proposed algorithm, theM function
in Equation 1 is used to select themildestrating. After empirical
tests, this was the strategy that yielded the best performance with
our dataset. The rationale behind the choice of themildest rating
is the following: Given a user profile, milder ratings are theleast
informative and therefore they will have a small influence when de-
ciding whether to recommend an item or not. In addition, theyin-
troduce the least amount of risk in terms of possible errors.Hence,
whenever a disagreement is detected, the rating that minimizes the
risk of error is chosen. Although this particular way of treating mild
disagreements should generalize well to other datasets, other strate-
gies, such as using the average of the conflicting ratings, might
prove better in datasets with different conditions. However, they
yielded worse accuracy results in our case.

In order to obtain the mildest rating of a set, we define the func-
tionM applied to a set of ratingsRum that returns the ratingr that
is closest in value to the average of the rating scale. Formally,

M : Rum = {r1, ..., rt} → r

r ∈ Rum s.t. |r − σ| ≤ |r′ − σ| ∀r′ ∈ Rum (1)

whereσ = 1

M

P

j
r∗j andR∗ is the numerical rating scale of

choice (e.g. R∗ = {1, 2, 3, 4, 5}). Note that the mildest rating
function applied to an empty set returns a non-determined value,
M (∅) = IND.

Evaluation procedure.
Again, we use a similar experimental procedure as before with

denoised ratings for both the test and training sets as our aim is to
predict a clear (denoised) set of preferences rather than topredict
the noise inherent in the original ratings. It is clear that in apply-
ing the denoising algorithm, the mean user rating may move closer
to the middle of the scale, reducing the RMSE. We argue how-
ever, that it does so rightfully: recall that we have not invented any
new ratings, and only deleted ratings – less than 10% in any case –
when there was severe disagreement (i.e. user feedback could not
be trusted).

One-source re-rating.
Although Algorithm 1 can be applied witht re-rates, it is not

realistic to expect having items that are re-rated many times by the
same user. Therefore, a case of particular interest is that in which
users re-rate items only once (one-source re-rating). Algorithm 2
includes the pseudocode to instantiate Algorithm 1 to the case of
one-source re-rating.

Algorithm 2 Denoising based on one-source re-rating
Given user u, movie m, trialt = 1, 2, 3, andγ > 0
Rut = {r1, ..., rk} (ratings 6= 0 for user u in one trial)
Rut′ = {r1, ..., rl} (ratings 6= 0 for user u in a different trial)
being 0 the value of the non-rated item
for ri ∈ Rut do

if 0 < |Rut(m) − Rut′(m)| > γ then
Rut(m) = 0 (SD: we delete rating)

else if 0 < |Rut(m) − Rut′(m)| < γ (MD: ratings in both
trials differ by less than a given thresholdγ) then

Rut(m) = M(Rut(m), Rut′(m)) (whereM is defined in
Eq. 1)

else
Rut(m) = Rut′(m)
(A: we do nothing, we keep rating as valid)

end if
end for

Datasets T1 ⊚ (T2, T3) ∆T1

User-basedkNN 0.8647 13.4%
SVD 0.8800 14.1%

Table 5: RMSE of the algorithms when denoisingT1 with rating
values fromT2 andT3.

The previous one-source re-rating algorithm is applied to denoise
the data inT1 andT2 with datasets collected at a later time (T2

and/orT3). The performance of the CF algorithms when predicting
each of the denoised datasets (T1 andT2) is summarized in Table 4,
where each of the∆ columns contains the performance gain with
respect to predicting the original – noisy – dataset, as summarized
in Table 2. As shown in Table 4, the accuracy increases above11%
when denoising the original dataset with the information from an-
other dataset collected at a later time. The best results areobtained
when denoisingT1, whereas denoisingT2 (originally less noisy
thanT1) yields lower relative improvement (last column in Table
4). It is important to note that the accuracy always increases after
denoising all datasets. Of particular interest is the case of denoising
a noisy dataset with another equally noisy dataset:e.g.,denoising
T1 with data fromT3. Note that in this case the performance is
significantly better than when predicting the originally less noisy
datasetT2. Our findings illustrate how the proposed algorithm is
able to significantly denoise datasets with varying amountsof nat-
ural noise.

Two-source re-rating.
In order to analyze the value of multiple re-ratingsvs. one re-

rating, we evaluate the denoising algorithm based on two-source re-
rating (i.e. where users provide three ratings per item: the original
rating plus two re-ratings).

Table 5 reports the results whereT1 is denoised using the data
from T2 andT3, according to Algorithm 1. Note that theRSME
decreases up to14.1%, which is a significant improvement with
respect to the original results reported in the second column of Ta-
ble 2 and to the single re-rating denoising results reportedin Table
4. For instance, the RMSE for the SVD is now measured to be
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Figure 2: Improvement in the prediction error as a function of the percentage of denoised ratings.
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(b) Two-source denoising (T1 with T2 andT3)
Figure 3: Improvement of the prediction error as a function of the percentage of denoised ratings. Denoising extreme ratings (i.e. 1 or 5).

0.88, compared to the original1.0244 for T1 (noisiest dataset) or
0.9861 for T2 (less noisy). It is also interesting to note that both al-
gorithms experience very similar improvements. From our results,
we conclude that having two re-ratings allows for better denois-
ing than having just one-rating, yielding significant and compara-
ble improvements for all algorithms. We leave for future work the
study of the accuracy gains as the number of re-rating sources in-
creases.

4. PARTIAL DENOISING
The denoising analysis presented in Section 3 assumed that there

were one or two re-ratings for each of the original ratings. How-
ever, it is unrealistic to expect users to provide feedback about all
items more than once. A more practical setting would consiston
denoising selected ratings (partial denoising). In this section, we
analyze the relation between the percentage of denoised ratings and
the prediction error. We also propose ways to minimize the num-
ber of processed ratings while keeping a significant improvement
in RMSE.

In the rest of this section we report our results in% of improve-

ment over the noisy RMSE measured forT1 (see first column in
Table 2). Note that a particular algorithm having a higher value
in the graph does not mean that it performs better than the other
in terms of RMSE. It means that its relative improvement in% of
prediction accuracy is larger.

4.1 Random Denoising
Figure 2 illustrates the evolution in the percentage of improve-

ment of the studied algorithms as the percentage of (randomly cho-
sen) denoised ratings increases. Figure 2a summarizes the results
when denoising the data inT1 with data fromT3 (one-source re-
rating or denoising), whereas Figure 2b depicts the improvement
in RMSE when denoising the data inT1 via data fromT2 andT3

(two-source re-rating or denoising).
Both recommendation algorithms follow a similar trend bothin

the one-source and two-source re-rating experiments. Fromour
experiments, it seems that the relation between the accuracy im-
provement and the amount of denoising is algorithm independent.

In the case of one-source re-rating, an improvement of5% is
obtained by denoising over75% of the original ratings, whereas
the same improvement is achieved by denoising less than50% of
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Figure 4: Improvement of the prediction error as a function of the percentage of selected users (top X axis) and the percentage of denoised
ratings (bottom X axis) in the dataset. Users are selected according to their “noisiness” and only extreme ratings are denoised.

the original data in the two-source approach.

4.2 Data-dependent Denoising
In the previous analysis, the ratings to be denoised were ran-

domly selected, which is probably not the optimal strategy.We
propose next a procedure to maximize the gain in performancewith
a restricted number of re-ratings. The selection of which ratings to
re-rate will depend only on the original rating value – henceit is
a data-dependent approach. We consider the options of denoising
mild (i.e. in the middle of the scale)vs. extreme (i.e. at each
end of the scale) ratings. At first sight, it might seem that mild
ratings would be the preferred ratings to denoise, given that they
are typically more inconsistent. However, the findings of our ex-
perimental analysis show the opposite: denoising extreme ratings
yields larger performance gains than denoising mild ratings. This
behavior might be due to several reasons, including that thecon-
tribution of extreme ratings to the final recommendation decisions
is generally larger (both positively or negatively) in the algorithms
under study. Also, the RMSE measure penalizes large errors that
are more likely to occur with extreme ratings. Therefore, errors as-
sociated to predicting extreme ratings are likely to impactRMSE
more than errors associated with mild ratings.

Figure 3 depicts the RMSE gains when denoising only extreme
ratings inT1 (i.e. ratings of1 or 5 in the scale used in the experi-
ments) using the data fromT3 (Fig. 3a) andT2 andT3 (Fig. 3b).
In this case, extreme ratings only represent27% of the total ratings
– hence, thex-axis in the graphs runs only up to30%. A 5% in-
crease in performance is achieved when re-rating less than25% of
the original ratings with one-source denoising and less than 20%
with the two-source approach.

The maximum accuracy improvement when denoising all ex-
treme ratings (i.e. 27% of all ratings) is between7 to 9.5%, de-
pending on the algorithm and the denoising approach (onevs. two-
source). Note that this performance gain is similar to the gain ob-
tained when denoising80% of the – randomly selected – ratings
(see Figure 2).

Interestingly, one-source and two-source denoising achieve com-
parable accuracy gains: the difference between the curves in Fig.
3a and Fig. 3b is around1%. From these findings, we conclude that
the performance gains obtained with more than one re-ratingare al-
most negligible when using a smart strategy to select the ratings to

process.
In sum, our experimental analysis implies that asking usersto

re-rate (just once) the items with extreme ratings (typically a small
percentage of the total number of ratings provided) would yield
accuracy gains of at least7%. These results raise a new research
question: would rating the same percentage (around27%) of un-
seen items yield higher performance gains than re-rating items with
extreme ratings? The experiments discussed in Section 5 aimat
providing an answer to this question.

4.3 Data and User-dependent Denoising
In the previous section we have focused on selecting ratingsto

denoise based on their value. However, users are not equallycon-
sistent when providing their ratings, such that noisy data is typically
generated by inconsistent users. Therefore, it would make sense to
only ask inconsistent or unstable users to re-rate past ratings.

In order to identify inconsistent users in our dataset, we: (1) se-
lect the users with the highest levels of inconsistency –noisiness
– in their ratings; and (2) apply the previously explaineddata-
dependentdenoising algorithmonly to the ratings coming from
such users. The results of this analysis are summarized in Figure
4. This Figure may be compared to Fig. 3, where the same algo-
rithm was used but without selecting the users. Note that data and
user-dependent denoising needs less than10% of denoised ratings
by 30% of the users to yield over5% of RMSE improvement. Sim-
ilar results are obtained when denoising around20% of the ratings
– by all the users – in the data-dependent approach (Fig. 3). The
data and user-dependent denoising algorithm would be completely
unobtrusive to the remaining70% of the users. Figure 4a reports
the results for data and user-dependent one-source denoising ofT1

with data fromT3. Results may be compared to those of Fig. 3a.
As in the case of data-dependent denoising, the difference between
one-source and two-source denoising is relatively small (compare
Figures 4a and 4b).

Detecting “noisy” users.
The data and user-dependent approach assumes that there is an

effective method to compute userinconsistenciesand hence detect-
ing noisy users. However, this is not a trivial question to answer.
In our experiment, we detect noisy usersa posterioriby using the
information from different rating trials: usernoisinessis given by



one-source
T1 ⊚ T3

two-source
T1 ⊚ (T2, T3)

Random 0.74% 1.64%
Data-dependent 5.14% 6.33%
Data and user-dependent7.25% 8.54%

Table 6: Average improvement in RMS for denoising20% of the
ratings.

the average per-user prediction error between the different rating
trials and we use this value to decide the group of users to denoise.

In a practical setting, an incremental approach could be applied
where all users are asked to re-rate a small number of items and
this re-rating data is used to estimate their noisiness. However, we
leave this analysis for future work.

4.4 Summary
A final summary on partial denoising is included in Table 6 that

reports theaverageresult when denoising20% of the ratings with
each of the approaches.

5. THE VALUE OF A RATING
Regardless of the approach for generating recommendations, all

RS aim at modeling their users’ tastes. Therefore, the more aRS
knows about its users, the more accurate its predictions should be.
In the case of RS based on CF and explicit feedback, this translates
into the following – intuitive and somewhat obvious – observation:
“The more ratings the system has from a user, the more accurate
the predictions should be for that user”. In order to gather as much
information as possible about the user’s likes and dislikes, RS typ-
ically ask their users to rate a diverse set of unseen items, particu-
larly to the users that are new to the system [16].

However, the denoising approach proposed in this paper has raised
a complementary view to collecting data from users: user feedback
is noisy; therefore, the accuracy of a RS might improve more by
asking users to re-rate previously rated items – which wouldallow
to denoise the already collected ratings – than by asking them to
rate unseen items. In order to validate this hypothesis, we now re-
port the results of an experiment designed to measure the accuracy
gain introduced by re-rating when compared to the accuracy gain
obtained when adding new ratings to a RS. Our experiment con-
sists of the following steps:(1) Measure the value of a new rating
in our dataset (T1 in the experiment) by randomly removeing50%
of the original ratings and measuring the improvement in RMSE
as the remaining50% of ratings are added.(2) Measure the value
of a re-rating in the same circumstances by again randomly remov-
ing 50% of the original ratings but now analyzing the improvement
introduced by re-rating a fraction of the remaining ratings.

For simplicity, the results presented in this section correspond to
user-basedkNN. However, we obtained similar results for the other
algorithms. Figure 5 depicts the relative improvement in RMSE
as new ratings are added or existing ratings are re-rated using the
random or data-dependent approach3. Note that re-rating outper-
forms adding new ratings in all cases, and especially in the data-
dependent approach. For example, adding less than300 re-ratings
to the original1064 ratings, yields an RMSE improvement of8.7%
(from 1.0538 RMSE to0.9626). However, randomly adding al-
most700 new ratings barely improves the RMSE by3% 4.

3We do not compare to the most favorable user and data-dependent
approach since, as we explained, it is not fair to assume we can
classify users with re-rating data.
4It should be noted that there might exist strategies to add more
informative new ratings that maximize information gain. Weleave
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Figure 5: Improvement in RMSE when adding new ratingsvs. re-
rating existing ones. Results correspond to predicting datasetT1

with the re-rating values drawn fromT3.

The figure includes the plot of a linear fit to each of the curves,
which allows to compute the value of adding a single rating (new
or re-rated): in the case of data-dependent re-rating, the improve-
ment is of0.035% per rating, which is10 times larger than the
improvement obtained when adding new ratings (0.0037% per rat-
ing). Thus, our experiments confirm the previously stated hypoth-
esis: in the conditions of our study, re-rating items – and hence de-
noising the input data – yields larger performance gains than adding
ratings of unseen items. Our results are dataset and algorithm-
dependent. It must be noted that there is an obvious limitation
to this finding: you can only re-rate as many ratings as you have
previously rated.

In our future work, we plan to apply the proposed denoising ap-
proach to other datasets and algorithms in order to better under-
stand the scope of our findings.

6. RELATED WORK
The bias introduced in RS by noise in explicit user feedback has

been known for some time. However, regardless of the large and
growing bibliography in the area of RS and the importance of this
issue in the design of effective strategies, there are not many refer-
ences in the literature. To the best of our knowledge, the only work
that proposes an approach to deal with natural noise directly is that
of Mahonyet al. [13]. In their work, they classify noise in RS into
natural andmalicious. The former refers to the definition of nat-
ural noise used in this paper, while the latter refers to noise that
is deliberately introduced in a system in order to bias the results.
Even though the focus of their work is onmaliciousnoise, they do
propose a denoising algorithm that can be used to detectnatural
noise. Assuming that their recommendation algorithm is always
accurate within a certain threshold (γ) they consider any rating that
deviates more thanγ as containing natural noise and consequently
disregard it in the prediction process. The authors do not analyze
the effects of this denoising algorithm but they do report a marginal
improvement in their baseline algorithm for certain valuesof γ.

Other authors do not address the issue of reducing the effectof
natural noise but do aim at quantifying it. Hillet al. [11], for in-
stance, were aware of the effect of rating inconsistencies in pre-
diction accuracy and designed a small scale experiment to measure
the reliability in user ratings. They carried out a two trialuser study
with 22 participants and a time difference of6 weeks between tri-

this research for future work.



als. Unfortunately, the noise in user ratings was a side issue in their
overall study. Cosleyet al. [7] carried out a similar experiment us-
ing a rate re-rate procedure with two trials and212 participants.
They selected40 random movies in the center of the rating scale
(i.e. 2,3 or 4 rating) which participants had already rated in the past
– months or even years earlier, according to the authors. They re-
ported participants being consistent only60% of the time. Finally,
Herlockeret al.[10] discuss the noise in user ratings in their review
of evaluating methods for recommender systems. In particular, they
introduce the concept of the “magic barrier”.

Our approach to denoise user feedback data via a re-rating strat-
egy is motivated by thetest-retestprocedure used in Social and
Information Sciences to measure the reliability and stability of sur-
veys and respondents [17]. In addition, our strategy to denoise ex-
treme ratings is inspired by the notion ofExtreme Response Style
(ERS) in the Social Sciences literature [8]. The importanceof ex-
treme ratings has also been discussed in recent recommendersys-
tem publications [6] [15].

7. CONCLUSIONS

In this paper, we have analyzed the impact that natural noisehas
in common RS and proposed novel strategies to remove part of this
noise in a preprocessing step.

We have first measured the RMSE of five RS algorithms (two
baselines and three popular CF algorithms) in the presence of natu-
ral noise and have found that: (1) SVD and kNN were less sensitive
to this type of noise than our baselines; and (2) all the algorithms
are more sensitive to noise in the target (test) dataset thanin the
training set.

Next, we have proposed a novel algorithm to denoise rating datasets
from re-rating data:i.e. by asking users to rate again previously
rated items. We have measured accuracy improvements above14%
in the original RMSE in the case where each item is rated three
times (complete denoising). We have shown that this gain is not
dependent on the particular algorithm used for the prediction. How-
ever, in most situat ions it is unlikely to have re-ratings for every
item in the dataset. Therefore, we have also studied the behavior of
the proposed denoising strategy when processing only part of the
ratings (partial denoising). We have shown that simple strategies,
such as denoising only extreme ratings (data-dependent denoising),
which is equivalent to denoising less than20% of the ratings in our
dataset, yields over5% of improvement with respect to the original
RMSE. Furthermore, we have proposed a user-dependent denois-
ing strategy where similar improvements of5% are achieved when
re-rating less than10% of the items by only30% of the users. In
this case, the denoising process would not affect most of theusers.

Finally, we have analyzed the value of a new ratingvs. a re-
rating from the perspective of accuracy gains. In our experiments,
we have found that when following the right denoising strategies
a re-rating yields up to4 times larger accuracy gains than a new
rating. Therefore, in such circumstances asking users to re-rate
items would allow to gather more information about the user than
asking them to rate new and unrelated items.

Note that the dataset used in this work resembles typical RS
rating datasets, such as the one from the Netflix Prize. Although
we believe that the qualitative results reported in this paper should
generalize to other datasets and domains, we plan to study other
datasets in order to cross-validate results, build more accurate mod-
els of the natural noise and propose better denoising approaches. In
this work – as it is commonly done in the RS literature, we have
assumed that RMSE is an appropriate success measure. In future
work we plan to validate the effect of denoising through targeted
user studies. Finally, both the proposed denoising algorithm and

the strategies for partial denoising are amenable to variations that
should be explored in the future.

We believe that the work presented in this paper opens up a new
avenue of research in explicit-feedback RS that is complementary
to one of the common approaches: instead of focusing on improv-
ing a RS algorithm and its response to a specific dataset, we have
shown that improving thequality of the original dataset via a de-
noising step yields significant performance gains in the most com-
mon CF algorithms. In addition, the proposed approach is notin-
trusive to the user nor to the existing RS algorithm/system,as it
simply adds re-ratings where appropriate.
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