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ABSTRACT

A common approach to designing Recommender Systems (RS)

consists of asking users to explicitly rate items in ordecdbect
feedback about their preferences. However, users havesheam
to be inconsistent and to introduce a non-negligible amotmatu-
ral noisein their ratings that affects the accuracy of the predicion
In this paper, we present a novel approach to improve RS acgur
by reducing the natural noise in the input data via a prefzsing
step. In order to quantitatively understand the impact afina
noise, we first analyze the response of common recommendatio
algorithms to this noise. Next, we propose a novel algorittiafe-
noise existing datasets by means of re-ratingy: by asking users
to rate previously rated items again. This denoising stejalgivery
significant accuracy improvements. However, re-ratingteths in
the original dataset is unpractical. Therefore, we stugyatcu-
racy gains obtained when re-rating only some of the ratings.
particular, we propose two partial denoising strategiesta &aind
user-dependent denoising. Finally, we compare the valaddihg

a rating of an unseen itews. re-rating an item. We conclude with a
proposal for RS to improve the quality of their user data agnicle
their accuracy: asking users to re-rate items might, in scinsam-
stances, be more beneficial than asking users to rate urise®n i

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval] Information Filterin@General Terms. Algorithms,
Performance, Theorfeywords: Recommender Systems, Collab-
orative Filtering, Noise

1. INTRODUCTION AND MOTIVATION

Recommender Systems (RS) [1] are becoming so ubiquitous in
our lives that popular authors have even ventured to say‘tet
are leaving the age of information and entering the age amec
mendation” [3]. The goal of RS is to model the users’ tastesf{p
erences) in order to suggest (recommend) unseen contérihéha
users would find of interest.

User preferences can be captureglicitly, by observing user
actions or consumption patterns [12];explicitly, by asking users
to rate certain items. Although explicit feedback adds alénron
the users, and different users might respond differentiydentives
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[9], it is commonly used because it respects user integityws
for greater transparency, and is more reliable than intplaia in
many cases. RS based on explicit user feedback are built thele
assumption that user ratings constitute the ground trutiutathe
users’ likes and dislikes. However, little attention hasrb@aid
to how consistent users are in giving these ratings. Gréattef
are being invested in finding better algorithms that cancedhe
Root Mean Square Error (RMSE) in predicting user ratings($i
[5]. However, it might well be that similar improvements @bbe
obtained by improving the quality of the input data and apgy
off-the-shelf algorithms.

In previous work [2], we reported on a user study designed to
capture user inconsistencies when giving explicit feedbiache
form of movie ratings. Our goal was to characterize the user i
put (hatural) noise and to analyze the impact that this noise has on
the so-callednagic barrierin RS [10] —i.e. the asymptotic limit
on accuracy improvements for all recommendation techisiques
gardless of how fine-tuned they are. The present work taleseth
previous results as the starting point, so we summarize theéhe
first part of Section 2.

The focus of this paper, though, is on novel approaches to im-
prove the accuracy of standard Collaborative Filtering)(&@l§o-
rithms by removing some of the natural noise present in thgg-or
nal rating data. We first analyze the behavior of common CB-alg
rithms under different natural noise conditions in the selgoart of
Section 2. Next, we propose a novel algorithm to remove ahtur
noise by means ak-rating—i.e. by asking users to rate again pre-
viously rated items (Section 3). However, in a practicalaion it
might not be feasible to have all users re-rate all items.rdfoee,
we discuss strategies to select the optimal ratings to bbateg, in
order to improve the algorithm’s accuracy with minimal iven-
tion (Section 4). This analysis raises the question of thetive
value of re-rating versus adding ratings for new items, Wwhie
discuss in Section 5. Finally, we describe related work ictia
6, and present our conclusions and highlight our lines afrute-
search in Section 7.

In sum, the main contributions of this paper are: (1) A study o
how common CF algorithms behave under a variety of natuiaéno
conditions; (2) A novel algorithm to denoise explicit ratidatasets
based on re-rating; (3) The proposal of strategies to ifjethie best
items to re-rate in order to accomplish effective parti@naising
and (4) A discussion on the impact that selective re-ratsigating
of new items would have on the performance of RS

2. NATURAL NOISE IN USER RATINGS

The results presented in this paper build upon previous \vork
analyzing user inconsistencies and characterizing upet {matu-
ral) noise in RS via explicit ratings [2]. Therefore, we dtsalim-



#T, | #I, # RMSE

N @] N @]
Th, T, | 2185 | 1961 | 1838 | 2308 | 0.573] 0.707
T\, Ts | 2185 1909 | 1774 | 2320 | 0.637| 0.765
Ty, Ts | 1969 | 1909 | 1730 | 2140 | 0.557 | 0.694

Table 1: Summary of results on the pairwise comparison tetwe
trials. Columns 1 and 2 contain the number of ratings ingrfal
andT}. Columns 3-4 depict the number of elements in the intersec-
tion and the union for trial$; and7;. The last two columns report
the noise measured as the RMSE of the intersection and tba uni
sets respectively.

marize next the findings of that work that are relevant to owrent
discussion.

Our user experiment consisted ®irials of the same task: rating
100 movies selected from the Netflix Prize database [5] via a Web
interface, and included18 participants. The three trials took place
at different points in time in order to assess the reliapitif the
user rating paradigm and to measure the variability of uséhe
minimum time difference between the first and second tria 2da
hours while the minimum time difference between the secot a
third trial was15 days. The first and third trial presented items in
the same random order while the second trial presented items
order of popularity. User ratings were provided on & 5 star
scale, with the additional option (an icon) of specifyingttthey

0.7 r
T

B 0.6 o (1,7,
o » T
D( T
o T, T
Sos = BERS
[}
< H
§ 0.4p
=
s
m0.3
o
5]
t02
Q
4
8 o1

0

Not seen 1 2 3 4 5

rating (grouped by runs)

Figure 1: Percentage of user inconsistencies by ratingevalu

and0.64 for the intersection sets arid69 and0.77 for the union,
depending on the trials. RMSE is lower for any pair in whighis
involved. Therefore, we concluded tHEt, where items were pre-
sented to the user in order of popularity, is the trial with thast
amount of natural noise [2].

Figure 1 shows the probability of inconsistency by the vaitie
the rating between pairwise trial€y(,1%), (T>,73) and ([1,75). In
other words, the probability that a rating with a valueXfin trial
T; will be different in trial7;. Note how ratings with extreme opin-
ions (.e. the lowest and highest ratings in the scale)ramee con-
sistent(i.e.,less noisy) across different trials: the probability of in-

had not seen or were unable to rate the movie. We compared theconsistencies is highest farands3 star ratings. Also note that the

Netflix dataset with ours in terms of the (a) rating distribatand
(b) number of ratings per user, and concluded that our exyertal
dataset is comparable to the Netflix dataset with respecbtio b
variables.

We define the aggregated rating of usés ratings of moviem
as a tuple(ry),,,.., wherer, corresponds to the rating in tridl,.
Therefore, for a given user and moviem we have vector of three
ratings (rumi, rum2, Tums). Note that there are uset movies
tuples {.e. 118 x 100 = 11800 in our case). A rating is considered
to be consistentacross trials when all values of, are the same.
Note that we exclude form our analysis the tuples where;adire
zeros, which is the value used to represenbfaseen

In order to analyze the effect that the not seen value hasrin ou
study, we considered two different subsets: a)ittiersection or
only tuples where all ratings aseen(> 0); and b) thaunion, where
not seen values are included. For instance, the tuple fotriais
with ratings (4, 5) ,,,, would be considered inconsistent, because
useru changed the evaluation of movie from 4 to 5 in the last
trial. This tuple would be included both in the intersectard the
union set. However, tuplét, 0) . would not be included in the
intersection set, because one of the ratingsristaseen

Table 1 summarizes the results of the experiment when gngupi
the trials by pairs, wher&}, corresponds to triak, £ = 1, ..., 3.
For example, ir71, users provide@185 out of the potential 1800
ratings. Thus9615 positions in the rating matrix df; arenot-
seervalues. The differences in the number of ratings illusthete
users were not even able to consistently determine wheliegr t
have seen a movie or not. Out of tBé85 items that users rated
in the first trial only1682 (77%) were consistently rated again in
trials 72 andT'3.

The right side of the Table contains the RMSE for the intersec
tion and union sets across all trials. Note that this RMSBtsime
error by a particular RS algorithm but rather the direct measf
the error between any two trials The RMSE ranges betweeérb6

distribution is not symmetric since the probability of imsisten-
cies is higher in the lower end of the scale (1 and 2 ratings) th
the positive ratings (4 and 5). The average ratings in oulyséue
2.73, 2.79 and2.79 for Ty, T> and T3, respectively. Finally, note
that the probability of inconsistency withot-seens significantly
lower than any of the rating values.

2.1 Algorithm Robustnessto Natural Noise

We shall now analyze the robustness of three common RS algo-
rithms to natural noise and compare their ability to predatBsets
with varying levels of natural noise. For comparison pugssve
also include two baselines — user mean and item (movie) na¢an,
though such strategies would not be used in a practical soena
The three algorithms are amongst the most commonly used-in co
laborative filtering settingsk-Nearest Neighbors &NN (item and
user based) [4] and Singular Value Decomposition (SVD).[14]

In order to test the algorithms, we carry out@-fold repeated
random sampling, selectifi§% of our data asraining and10% as
testing—i.e. 10% of unknown ratings are predicted by each of the
algorithms, given the othéd0%. Our dataset consists of few users
(118) and items 1(00), with an average oi8.5 ratings per user.
Therefore, each testing subset might yield significanedéffices in
the final error measure. Hence, we use a large number of cross-
validation runs and @0/10 split — instead of the commas0,/20,
in order to ensure consistent and fair results for all atars. This
same validation procedure will be used throughout the paper

2.1.1 Trial RMSE

First, we analyze the performance and robustness of the algo
rithms to natural noise by applying each of the algorithmedoh
of trial datasetsTi, 7>, andT3).

Table 2 summarizes the RMSE of each of the five algorithms
with the datasets for each trial. Rather than focusing ofRIMSE
values for each algorithm — which depend on the parameter set

IComputed as the square root of the square differences hetwee tings and nature of the dataset, we are interested in congpteir

ratings in the two trials. In the union set, “not seen” valaes
replaced by the user average.

robustness to natural noise. As shown in the table, all &lgos
perform best on the second tridly). This is the trial that was



Dataset T Ty T3 Thest ATworst
User Average 1.2011 | 1.1469 | 1.1945 4.7%
Item Average 1.0555 | 1.0361 | 1.0776 4%
User-base®NN | 0.9990 [ 0.9640 | 1.0171 5.5%
Item-basedkNN | 1.0429 | 1.0031 | 1.0417 4%
SVvD 1.0244 | 0.9861 | 1.0285 4.3%

Table 2: RMSE of the algorithms in predicting each trial data
The best predicted dataset appears in bold. The last colepants
improvement in % for less noisy trial{) as compared to noisiest
(eitherT} or Ts, depending on the algorithm)

Training/Testing Dataset 77 €« 1> | 11 € T5 | 1> 4 T3
User Average 1.1585 1.2095 1.2036
Movie Average 1.0305 1.0648 1.0637
User-base#NN 0.9693 1.0143 1.0184
Item-basedkNN 1.0009 1.0406 1.0590
SVD 0.9741 1.0491 1.0118

Table 3: RMSE of the algorithms when predicting one dataset i
terms of another onel{ « T; means predicting’; usingT; for
training). Best result for each algorithm in bold.

found to contain the least amount of natural noise, as pusijo
explained. However, the relative performance ranking efatyo-
rithms remains the same regardless of the datasetuser-based
kNN first, SVD second, and item-bas&NN third. There are no
significant differences in improvement between the bestvemdt
predicted dataset: column 5 ranges fré¥ato 5.5%. Note that the
larger this difference, the more affected the algorithmyisatural
noise.

2.1.2 Prediction RMSE
In our previous analysis, we predicted ratings within al&iisgs-

sion —i.e. the training and test datasets have the same time stamp.

A more realistic setup consists of predicting future ragifigpm
past ones. With this rationale in mind, we now measure the RMS
when predicting a future trial by using a past one. We use daim
validation procedure as in our previous experiment. Howehe
10% test set is now taken from the target trial, which is différen
and later in time — than the training set.

The results are summarized in Table 3. A first observationa t
the error values are similar to the errors obtained whengdioitna-
trial prediction for all algorithms. The worst results afetained
when predictingl’; (last two columns). Note th&fs is the dataset
with the largest time gap from the rest (at le&sdays fromT» and
16 days fromT}). However, the error obtained when predictifig
from Ty or T» is comparable to the error obtained when trying to
predictTs from its own data (see third column in Tables 2 and 3).
As in the previous experiment, the differences in behavitwien
algorithms are not significant.

The best results are obtained when predictiag(least noisy
dataset) fronf;. However as summarized in Table 1, the number
of user inconsistencies betwe&h and 7> was not the minimum
among all trials — which correspondedfp andTs; (last column in
the Table). Therefore, we shall posit that the algorithnesnaore
sensitiveto the amount of noise in the target (test) dataset than the
amount of noise in the training dataset. This hypothesisis ¢
firmed when predictingy from T, whereT is noisier thanl,?2.

In this case, the RMSE values are notably higher than when pre

2Note that this experiment is done for illustration purpsirsce in
a practical situation it does not make sense to predict arpisg
from a future one.

dicting 7% from T1: 1.02019 (vs. 0.9693), 1.05338 (vs. 1.0009),
and1.02778 (vs.0.9741) for user-base@NN, item-based&NN and
SVD respectively.

This finding suggests that RMSE should be applied with care
when used as a success measure for RS: the performance of the
algorithms will be affected by errors and noise in the tesaskt,
such that their true performance might be higher than medsur
due to the noisy “ground truth”. Our findings also suggest tha
the performance of all algorithms is affected by the noissnia
the rating dataset: a change in the order with which itemswer
presented to the users to be ratedy(,in 71 vs.7>) might improve
the algorithm’s performance up t&5&5%, as illustrated in the last
column of Table 2. These findings serve as motivation for thegkw
presented in the rest of this paper, where we propose anagpro
to reduce existing natural noise in order to increase thdigtien
accuracy of the algorithm. Since we have already seen tkag th
is no significant difference between algorithms, resulthanext
sections will be reported only for two representative althons:
user-base#NN and SVD.

3. DENOISING VIA RE-RATING

In the previous section, we have shown the impact that ratura
input noise has on the RMSE of RS algorithms and hypothesized
that denoising the input dataset might improve performantie
explore now whether having multiple repetitions of a useinga
(re-rating) can be exploited to remove some of the naturislena
the original dataset and hence obtain better predictions.

In particular, we propose a novel denoising algorithm airaed
removing input noise while retaining maximum informatiorthe
dataset. Hence, we impose tf@rnessconditions to be met by the
algorithm:

e The algorithm shall produce a denoised version of the input
dataset that has as many ratings as possil#e it should
delete as few ratings as possible from the original dataset)

e The denoised dataset should always include one of the rat-
ings provided by the user in one of the triale( the al-
gorithm should not create new values, but rather decide on
which of the existing input ratings to trust)

Algorithm 1 Denoising O) at-source re-Rated item

Input: Rym = {ro, ..., 7 } — set of ratings of usex on moviem
(original rating plust re-ratings)
Input: v — threshold of noise
Output:r — de-noised rating
function D : (Rum = {ro,...,r¢},y) — 7
S={M({a,b})}|a € RumAb € RumAa #bAla—b| <~
— Create a sefS composed of the mildest value of all possible
pairs of ratings iNRum S.t.|a — b| <
if 3a,b € S s.t. |a — b > v then

returnD(S, ) —apply recursively if there is at least 018D
else

return M (S)
end if

Given these two conditions, we formalize the Algorithm 1eTh
algorithm receives the set of+ 1 ratings that a user has given to
a given item -i.e. original rating plust re-ratings — and returns a
single denoised rating The denoised rating is obtained by recur-
sively removing all ratings that belong to a rating pairt) whose
distance is larger tham, and by replacing the pairs whose distance
is less or equal tham by the mildest one.



DenoisedDenoising| Th @ Ta | ATy |TioTs | ATy | T2 T3 | AT,
User-baseNN 0.8861 | 11.3% | 0.8960 | 10.3% 0.8984 6.8%
SVD 0.9121 | 11.0% | 0.9274 9.5% 0.9159 7.1%

Table 4: RMSE of the algorithms when predicting a datasetttas been denoised using rating values from another d¢igset7; means
T; has been denoised usifi). Also included relative improvement over RMSE in the anggi(noisy) dataset

The algorithm can be understood by analyzing its output dlnea
of the three possible conditions. If thereaigreemen{A) between
all ratings belonging to a given user and movie, the algorite-
turns that rating. If all ratings differ by more than a givéneshold
v, there isstrong disagreemer{SD) and the rating is removed from
the original dataset. Note that in this particular case wee-@mov-
ing existing ratings since there is too much inconsistey.must
ensure that this situation happens only rarely not to canflith
the first fairness condition that we imposed.

Finally, if at least two ratings differ by less than there is a
mild disagreementondition (MD). The strategy to follow in this
case is not obvious. In the proposed algorithm, thefunction
in Equation 1 is used to select thaldestrating. After empirical
tests, this was the strategy that yielded the best perfarenaith
our dataset. The rationale behind the choice ofrtilelest rating
is the following: Given a user profile, milder ratings are tbast
informative and therefore they will have a small influenceewhe-
ciding whether to recommend an item or not. In addition, timey
troduce the least amount of risk in terms of possible eridence,
whenever a disagreement is detected, the rating that nzegihe
risk of error is chosen. Although this particular way of tieg mild
disagreements should generalize well to other dataséts, strate-
gies, such as using the average of the conflicting ratingghtmi
prove better in datasets with different conditions. Howgteey
yielded worse accuracy results in our case.

In order to obtain the mildest rating of a set, we define thefun
tion M applied to a set of ratingB..., that returns the rating that
is closest in value to the average of the rating scale. Féymal

M : Rym ={ri,..,m} —r
r € Rum s.t.|r —o| < |r' — 0| Vr' € Rum

@

wheres = 47 > r; and R* is the numerical rating scale of
choice €.9. R* = {1,2,3,4,5}). Note that the mildest rating
function applied to an empty set returns a non-determindakya
M (@) =IND.

Evaluation procedure.

Again, we use a similar experimental procedure as before wit
denoised ratings for both the test and training sets as auisaio
predict a clear (denoised) set of preferences rather tharettict
the noise inherent in the original ratings. It is clear tmaapply-
ing the denoising algorithm, the mean user rating may masecl
to the middle of the scale, reducing the RMSE. We argue how-
ever, that it does so rightfully: recall that we have not imtegl any
new ratings, and only deleted ratings — less than 10% in asg€a
when there was severe disagreement (i.e. user feedbaak ol
be trusted).

One-source re-rating.

Although Algorithm 1 can be applied withre-rates, it is not
realistic to expect having items that are re-rated manydihyethe
same user. Therefore, a case of particular interest isrhahich
users re-rate items only once (one-source re-rating). rilgo 2
includes the pseudocode to instantiate Algorithm 1 to thee e
one-source re-rating.

Algorithm 2 Denoising based on one-source re-rating
Given user u, movie m, trigdl=1,2,3, andy > 0
Rut = {r1,...,rx} (ratings# 0 for user u in one trial)
Ry = {ri,...,m} (ratings# 0 for user u in a different trial)
being 0 the value of the non-rated item
for r; € Ryt do
if 0 < |Rut(m) — Ry (m)| >~ then
Ry:(m) = 0 (SD: we delete rating)
eseif 0 < |Rut(m) — Ry (m)| < ~ (MD: ratings in both
trials differ by less than a given threshoid then
Rui(m) = M(Rut(m), Ry (m)) (WhereM is defined in
Eqg. 1)
else
Rut(m) = Ry (m)
(A: we do nothing, we keep rating as valid)

end if
end for
Datasets Ty (Tx,13) | ATy
User-base®NN 0.8647 13.4%
SVD 0.8800 14.1%

Table 5: RMSE of the algorithms when denoisifig with rating
values fromZ» and73.

The previous one-source re-rating algorithm is appliecetmise
the data inTy and 7> with datasets collected at a later tinig; (
and/orT3). The performance of the CF algorithms when predicting
each of the denoised dataséfs &nd75) is summarized in Table 4,
where each of thé\ columns contains the performance gain with
respect to predicting the original — noisy — dataset, as sanzed
in Table 2. As shown in Table 4, the accuracy increases abte
when denoising the original dataset with the informatianfran-
other dataset collected at a later time. The best resulsidagned
when denoisindll, whereas denoisind@> (originally less noisy
thanTy) yields lower relative improvement (last column in Table
4). It is important to note that the accuracy always increaster
denoising all datasets. Of particular interest is the cademoising
a noisy dataset with another equally noisy dataseg:,denoising
T with data from75. Note that in this case the performance is
significantly better than when predicting the originallgdenoisy
datasetl». Our findings illustrate how the proposed algorithm is
able to significantly denoise datasets with varying amoahtsat-
ural noise.

Two-source re-rating.

In order to analyze the value of multiple re-ratings one re-
rating, we evaluate the denoising algorithm based on twoesare-
rating (.e. where users provide three ratings per item: the original
rating plus two re-ratings).

Table 5 reports the results wheTg is denoised using the data
from T» and T3, according to Algorithm 1. Note that tHRSME
decreases up t@4.1%, which is a significant improvement with
respect to the original results reported in the second colofiTa-
ble 2 and to the single re-rating denoising results repartdéble
4. For instance, the RMSE for the SVD is now measured to be
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0.88, compared to the origindl.0244 for T: (noisiest dataset) or
0.9861 for T» (less noisy). It is also interesting to note that both al
gorithms experience very similar improvements. From osults,
we conclude that having two re-ratings allows for betteraien
ing than having just one-rating, yielding significant andnpara-
ble improvements for all algorithms. We leave for future kvtite
study of the accuracy gains as the number of re-rating ssunce
creases.

4. PARTIAL DENOISING

The denoising analysis presented in Section 3 assumedhérat t
were one or two re-ratings for each of the original ratingsawH
ever, it is unrealistic to expect users to provide feedbdaugall
items more than once. A more practical setting would cormist
denoising selected ratings (partial denoising). In thigiea, we
analyze the relation between the percentage of denoisedsand
the prediction error. We also propose ways to minimize tha-nu
ber of processed ratings while keeping a significant impromet
in RMSE.

In the rest of this section we report our result$érof improve-

ment over the noisy RMSE measured fBr (see first column in
Table 2). Note that a particular algorithm having a highduea
in the graph does not mean that it performs better than ther oth
in terms of RMSE. It means that its relative improvemen¥irof
prediction accuracy is larger.

4.1 Random Denoising

Figure 2 illustrates the evolution in the percentage of mupr
ment of the studied algorithms as the percentage of (randoina-
sen) denoised ratings increases. Figure 2a summarizesgtlsr
when denoising the data ifiy with data fromT5 (one-source re-
rating or denoising), whereas Figure 2b depicts the impnare
in RMSE when denoising the data via data from7» andT5
(two-source re-rating or denoising).

Both recommendation algorithms follow a similar trend bisth
the one-source and two-source re-rating experiments. FEnam
experiments, it seems that the relation between the agcumac
provement and the amount of denoising is algorithm indepeind

In the case of one-source re-rating, an improvemeni%fis
obtained by denoising over5% of the original ratings, whereas
the same improvement is achieved by denoising less 0@k of
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the original data in the two-source approach.

4.2 Data-dependent Denoising

In the previous analysis, the ratings to be denoised were ran
domly selected, which is probably not the optimal stratetye
propose next a procedure to maximize the gain in performaitbe
a restricted number of re-ratings. The selection of whitimgs to
re-rate will depend only on the original rating value — heitds
a data-dependent approach. We consider the options ofdiegoi
mild (i.e. in the middle of the scaleys. extreme {.e. at each
end of the scale) ratings. At first sight, it might seem thalidmi
ratings would be the preferred ratings to denoise, giventtiey
are typically more inconsistent. However, the findings of ex-
perimental analysis show the opposite: denoising extretiegs
yields larger performance gains than denoising mild ratirithis
behavior might be due to several reasons, including thatdie
tribution of extreme ratings to the final recommendationisiens
is generally larger (both positively or negatively) in tHgaithms
under study. Also, the RMSE measure penalizes large etnats t
are more likely to occur with extreme ratings. Thereforeges as-
sociated to predicting extreme ratings are likely to img@BtSE
more than errors associated with mild ratings.

Figure 3 depicts the RMSE gains when denoising only extreme
ratings in73 (i.e. ratings of1 or 5 in the scale used in the experi-
ments) using the data froff; (Fig. 3a) andl» and75 (Fig. 3b).

In this case, extreme ratings only repres&mt; of the total ratings
— hence, ther-axis in the graphs runs only up 80%. A 5% in-
crease in performance is achieved when re-rating lessfdnof
the original ratings with one-source denoising and lese #g%
with the two-source approach.

The maximum accuracy improvement when denoising all ex-
treme ratingsi(e. 27% of all ratings) is betweerT to 9.5%, de-
pending on the algorithm and the denoising approach ysrisvo-
source). Note that this performance gain is similar to tha gb-
tained when denoising0% of the — randomly selected — ratings
(see Figure 2).

Interestingly, one-source and two-source denoising aeliem-
parable accuracy gains: the difference between the cunvEgi
3aand Fig. 3bis arountd%. From these findings, we conclude that
the performance gains obtained with more than one re-ratiegl-
most negligible when using a smart strategy to select tliegsto

process.

In sum, our experimental analysis implies that asking users
re-rate (just once) the items with extreme ratings (typycalsmall
percentage of the total number of ratings provided) woukldyi
accuracy gains of at leas?%. These results raise a new research
question: would rating the same percentage (ardiiyd) of un-
seen items yield higher performance gains than re-ratamystwith
extreme ratings? The experiments discussed in Section &gim
providing an answer to this question.

4.3 Dataand User-dependent Denoising

In the previous section we have focused on selecting ratmgs
denoise based on their value. However, users are not equoally
sistent when providing their ratings, such that noisy datggically
generated by inconsistent users. Therefore, it would melksesto
only ask inconsistent or unstable users to re-rate past ratings.

In order to identify inconsistent users in our dataset, W¢:sé-
lect the users with the highest levels of inconsistenayoisiness
— in their ratings; and (2) apply the previously explairgata-
dependentdenoising algorithnonly to the ratings coming from
such users. The results of this analysis are summarizedyure-i
4. This Figure may be compared to Fig. 3, where the same algo-
rithm was used but without selecting the users. Note that dadl
user-dependent denoising needs less iéh of denoised ratings
by 30% of the users to yield ovei% of RMSE improvement. Sim-
ilar results are obtained when denoising aro6 of the ratings
— by all the users — in the data-dependent approach (Fig. 8. T
data and user-dependent denoising algorithm would be @teiypl
unobtrusive to the remaining)% of the users. Figure 4a reports
the results for data and user-dependent one-source degoisi;
with data fromT5. Results may be compared to those of Fig. 3a.
As in the case of data-dependent denoising, the differeetveden
one-source and two-source denoising is relatively smalinmare
Figures 4a and 4b).

Detecting “noisy” users.

The data and user-dependent approach assumes that thare is a
effective method to compute useconsistencieand hence detect-
ing noisy users. However, this is not a trivial question teveer.
In our experiment, we detect noisy userposterioriby using the
information from different rating trials: usewisinesss given by



one-source | two-source
ARONES T1© (T2, T3)
Random 0.74% 1.64%
Data-dependent 5.14% 6.33%
Data and user-dependent7.25% 8.54%

Table 6: Average improvement in RMS for denoisi@% of the
ratings.

the average per-user prediction error between the diffeating
trials and we use this value to decide the group of users toisen

In a practical setting, an incremental approach could béepp
where all users are asked to re-rate a small number of iteghs an
this re-rating data is used to estimate their noisiness. edew we
leave this analysis for future work.

44 Summary

A final summary on partial denoising is included in Table & tha
reports theaverageresult when denoising0% of the ratings with
each of the approaches.

5. THE VALUE OF A RATING

Regardless of the approach for generating recommendatifins
RS aim at modeling their users’ tastes. Therefore, the m&8 a
knows about its users, the more accurate its predictionsldie.

In the case of RS based on CF and explicit feedback, thislatass
into the following — intuitive and somewhat obvious — obsgion:
“The more ratings the system has from a user, the more aecurat
the predictions should be for that user”. In order to gatlsemach
information as possible about the user’s likes and dis|iR&typ-
ically ask their users to rate a diverse set of unseen itearicp-
larly to the users that are new to the system [16].

However, the denoising approach proposed in this papeaisseir
a complementary view to collecting data from users: usetidaek
is noisy; therefore, the accuracy of a RS might improve mgre b
asking users to re-rate previously rated items — which walltoiv
to denoise the already collected ratings — than by asking ttoe
rate unseen items. In order to validate this hypothesis, amene-
port the results of an experiment designed to measure theayc
gain introduced by re-rating when compared to the accuraay g
obtained when adding new ratings to a RS. Our experiment con-
sists of the following steps(1) Measure the value of a new rating
in our datasetqy in the experiment) by randomly removeifg%
of the original ratings and measuring the improvement in EMS
as the remaining0% of ratings are added2) Measure the value
of a re-rating in the same circumstances by again randormipve
ing 50% of the original ratings but now analyzing the improvement
introduced by re-rating a fraction of the remaining ratings

For simplicity, the results presented in this section cpoad to
user-base@#NN. However, we obtained similar results for the other
algorithms. Figure 5 depicts the relative improvement in $8/
as new ratings are added or existing ratings are re-rated tise
random or data-dependent approdctNote that re-rating outper-
forms adding new ratings in all cases, and especially in #ia-d
dependent approach. For example, adding lessib@ame-ratings
to the originall 064 ratings, yields an RMSE improvement&fr %
(from 1.0538 RMSE t00.9626). However, randomly adding al-
most700 new ratings barely improves the RMSE i *.

3We do not compare to the most favorable user and data-depende
approach since, as we explained, it is not fair to assume we ca
classify users with re-rating data.

“It should be noted that there might exist strategies to addemo
informative new ratings that maximize information gain. &ave
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Figure 5: Improvement in RMSE when adding new ratikgsre-
rating existing ones. Results correspond to predictings#af
with the re-rating values drawn froff.

The figure includes the plot of a linear fit to each of the curves
which allows to compute the value of adding a single ratirgun
or re-rated): in the case of data-dependent re-rating,ntipeave-
ment is 0f0.035% per rating, which isl0 timeslarger than the
improvement obtained when adding new ratingg9@37% per rat-
ing). Thus, our experiments confirm the previously stateubkty-
esis: in the conditions of our study, re-rating items — amtckale-
noising the input data — yields larger performance gains #uialing
ratings of unseen items. Our results are dataset and digorit
dependent. It must be noted that there is an obvious liroitati
to this finding: you can only re-rate as many ratings as yowe hav
previously rated.

In our future work, we plan to apply the proposed denoising ap
proach to other datasets and algorithms in order to bettéertn
stand the scope of our findings.

6. RELATED WORK

The bias introduced in RS by noise in explicit user feedbaxk h
been known for some time. However, regardless of the large an
growing bibliography in the area of RS and the importancehisf t
issue in the design of effective strategies, there are naynmeter-
ences in the literature. To the best of our knowledge, the wokk
that proposes an approach to deal with natural noise djriscthat
of Mahonyet al.[13]. In their work, they classify noise in RS into
natural and malicious The former refers to the definition of nat-
ural noise used in this paper, while the latter refers toentist
is deliberately introduced in a system in order to bias tlsailts.
Even though the focus of their work is omaliciousnoise, they do
propose a denoising algorithm that can be used to detctal
noise. Assuming that their recommendation algorithm isagtw
accurate within a certain thresholg) they consider any rating that
deviates more that as containing natural noise and consequently
disregard it in the prediction process. The authors do nalyaa
the effects of this denoising algorithm but they do reporizagimal
improvement in their baseline algorithm for certain valoés.

Other authors do not address the issue of reducing the effect
natural noise but do aim at quantifying it. Hék al.[11], for in-
stance, were aware of the effect of rating inconsistencigsé-
diction accuracy and designed a small scale experiment &sune
the reliability in user ratings. They carried out a two triakr study
with 22 participants and a time difference @fveeks between tri-

this research for future work.



als. Unfortunately, the noise in user ratings was a sidesigstheir
overall study. Coslegt al.[7] carried out a similar experiment us-
ing a rate re-rate procedure with two trials a2 participants.
They selectedlO0 random movies in the center of the rating scale
(i.e. 2,3 or 4 rating) which participants had already rated in the past
— months or even years earlier, according to the authorsy figie
ported participants being consistent o6li¢6 of the time. Finally,
Herlockeret al.[10] discuss the noise in user ratings in their review
of evaluating methods for recommender systems. In paaticiley
introduce the concept of the “magic barrier”.

Our approach to denoise user feedback data via a re-ratatg st
egy is motivated by theest-retestprocedure used in Social and
Information Sciences to measure the reliability and sitgtaf sur-
veys and respondents [17]. In addition, our strategy to idenex-
treme ratings is inspired by the notion Bktreme Response Style
(ERS) in the Social Sciences literature [8]. The importamicex-
treme ratings has also been discussed in recent recommsysder
tem publications [6] [15].

7. CONCLUSIONS

In this paper, we have analyzed the impact that natural maise
in common RS and proposed novel strategies to remove pdrisof t
noise in a preprocessing step.

We have first measured the RMSE of five RS algorithms (two
baselines and three popular CF algorithms) in the presdnao
ral noise and have found that: (1) SVD and kNN were less seasit
to this type of noise than our baselines; and (2) all the #lyos
are more sensitive to noise in the target (test) datasetithtire
training set.

Next, we have proposed a novel algorithm to denoise ratitapets
from re-rating datai.e. by asking users to rate again previously
rated items. We have measured accuracy improvements algve

in the original RMSE in the case where each item is rated three

times (complete denoising). We have shown that this gairois n
dependent on the particular algorithm used for the premictHow-
ever, in most situat ions it is unlikely to have re-ratings évery
item in the dataset. Therefore, we have also studied thevtwelat
the proposed denoising strategy when processing only paneo
ratings (partial denoising). We have shown that simpleetias,
such as denoising only extreme ratings (data-dependentsiteg),
which is equivalent to denoising less thzo% of the ratings in our
dataset, yields ovei% of improvement with respect to the original
RMSE. Furthermore, we have proposed a user-dependentsdenoi
ing strategy where similar improvementsi$t are achieved when
re-rating less than0% of the items by only30% of the users. In
this case, the denoising process would not affect most afiskes.
Finally, we have analyzed the value of a new ratisy a re-
rating from the perspective of accuracy gains. In our expenis,
we have found that when following the right denoising sgas
a re-rating yields up td times larger accuracy gains than a new
rating. Therefore, in such circumstances asking users-tatee
items would allow to gather more information about the ubant
asking them to rate new and unrelated items.

Note that the dataset used in this work resembles typical RS

rating datasets, such as the one from the Netflix Prize. Attho
we believe that the qualitative results reported in thisgpahould
generalize to other datasets and domains, we plan to stiny ot
datasets in order to cross-validate results, build morerabe mod-

els of the natural noise and propose better denoising apipesaln
this work — as it is commonly done in the RS literature, we have
assumed that RMSE is an appropriate success measure. @ futu
work we plan to validate the effect of denoising through ¢aed
user studies. Finally, both the proposed denoising alyoriand

the strategies for partial denoising are amenable to vansthat
should be explored in the future.

We believe that the work presented in this paper opens up a new
avenue of research in explicit-feedback RS that is comphéang
to one of the common approaches: instead of focusing on wapro
ing a RS algorithm and its response to a specific dataset, ve ha
shown that improving theuality of the original dataset via a de-
noising step yields significant performance gains in thetroos-
mon CF algorithms. In addition, the proposed approach ismot
trusive to the user nor to the existing RS algorithm/systamit
simply adds re-ratings where appropriate.
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