Nava Tintarev is an Assistant Professor and Delft Technology Fellow in the Web Information Systems group, Faculty of Electrical Engineering, Mathematics and Computer Science at TU Delft. She studies how to best present and adapt the presentation of complex data (using both natural language generation, and visualizations) in artificial advice giving systems.

Her fellowship project (ENSURE - ExplaiNing SeqUences in REcommendations) looks at ways of improving the transparency and decision support for recommender systems (like Amazon and Spotify), in recommendation scenarios that contain both surprising recommendations and trade-offs. She is also leading a smaller CEL project looking at issues relating to fake news in education and problem-based learning: SuSPECT: Scaffolding Student PErspectives for Critical Thinking. She is currently interested in contributing to projects and grant applications tackling issues regarding ethics in big data, algorithmic transparency, fake news, and filter bubbles.

Nava was previously an assistant professor at Bournemouth University (UK), a research fellow at Aberdeen University (UK), and a research engineer for Telefonica research in Barcelona (Spain).

Relevant keywords: explanations, natural language generation, human-computer interaction, personalization (recommender systems), and visualization.

Track record: I have published over 35 peer reviewed papers. These are on personalized information presentation in different application areas, including Recommender Systems, Scrutable Autonomous Systems (SAsSy), nature conservation (MinkApp), and Augmentative and Alternative Communication (AAC) ("How was school today...?"). I have also worked in industry (at Telefonica R&D) on human-centered issues in recommender systems. Sometimes external organizations give me some money to do interesting work. I have been a member of the ACM since January 2014.

Academic service: I am a senior PC member for the Conference on User Modeling, Adaptation and Personalization, and ACM Conference on Recommender Systems. I have also reviewed for other leading conferences and journals, as well as served in organizational roles for international conferences and workshops. I examine PhD dissertations and review grant proposals (e.g., for the EPSRC).

Students: I am on the outlook for enthusiastic PhD and Masters students to work on topics relating to the transparency of intelligent systems, and usability/interface issues (e.g. diversity, novelty) in recommender systems.


11th of Feb. Joining the Web Information Systems group, Faculty of Electrical Engineering, Mathematics and Computer Science TU Delft as an assistant professor on a personal fellowship. This enables me to fund a Research Fellow in the area of human-centered issues in recommender systems.

24th of November: I am delighted to act as track chair for the Intelligent User Interfaces track at UMAP'17, and as senior PC member for Recsys'17.

12th of November: Chairing a panel on ``Data Analytics: Balancing Insight, Privacy & Trust'' at the Big Data Conference, Dynamic Earth, Edinburgh, 8th of December, 2016

2nd of November: Our introduction to the special issue on Human Interaction With Artificial Advice Givers in ACM TiiS has been accepted. Articles will be available here!

31st of October: Our paper, Effects of Individual Differences in Working Memory on Plan Presentational Choices has been accepted for publication in Frontiers in Psychology, section Human-Media Interaction (IF: 2.463).

25th of October: Congratulations to our PhD candidate Kirsten Smith on passing her viva!

7th of October: I have been invited to join as member of the EPSRC Associate Peer Review College, to assist in peer review of grant proposals for the main UK government agency for funding research and training in engineering and the physical sciences.

28th of September: The joint workshop on Interfaces and Human Decision Making in Recommender Systems (IntRS) featured in a piece by Strands Retail on the ACM Recsys highlights.

21st of August: Paper accepted to SocInfo'16: "What am I not seeing? An Interactive Approach to Social Content Discovery in Microblogs", with Byungkyu Kang, Tobias Hollerer and John O'Donovan.